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A task performed almost effortlessly by humans, perception is perhaps one of the 

most difficult tasks for autonomous vehicles.  While substantial research has been done to 

develop these technologies, few studies have examined ways for multiple heterogeneous 

unmanned systems to cooperate in their perception tasks.  Our study examined ways to 

model both perceived and a priori geospatial information, and formatting these data so 

that they can be used by the growing unmanned systems community.   

We introduce a perception system model, consisting of distributed “smart” sensors.  

This system of sensors was developed for the Team CIMAR entry into the inaugural 

DARPA Grand Challenge autonomous vehicle competition held in March 2004.  The 

Smart Sensor Architecture proved to be a power method of distributing the possessing of 

sensor data to systems developed by engineers who best knew a particular sensor 

modality.  By standardizing the logical, transport, and electrical interfaces, the smart 

sensor architecture developed into a powerful world modeling method. 
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We also investigated current geospatial data-modeling methods used in the 

unmanned systems and geodetic information systems (GIS) communities.  Our study 

determined the commonalities among current methods and resulted in a first-generation 

geospatial data-sharing standard for unmanned systems compliant with the Joint 

Architecture for Unmanned Systems (JAUS). 
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CHAPTER 1 
INTRODUCTION AND RESEARCH PROBLEM 

1.1 Introduction 

Imagine a world without languages, with no standard methods of communicating 

with other people.  Imagine a world in which an individual or a small group of 

individuals had a language completely different from that of other individuals or groups.  

Image also that even the most primitive methods of communicating required an 

interpreter.  It would be unreasonable to expect two people to be able to come together 

and (with minimal effort) understand each other.  This is the state of the world in the 

unmanned systems community.  Developing a common language for unmanned systems 

is not trivial.  However, as unmanned systems become more commonplace and gain the 

ability to interoperate and ultimately collaborate, a standard communications method or 

language must be developed. 

As it has with a number of technological innovations throughout recent history, the 

United States Department of Defense (DoD) is helping to revolutionize the unmanned 

systems community by pushing the development of a standard communications method 

for all future DoD unmanned systems.  Recognizing the increased acquisition and 

maintenance costs for a growing fleet of unmanned systems with proprietary interfaces, 

the Office of the Secretary of Defense chartered the Joint Architecture for Unmanned 

Ground Systems (JAUGS) Working Group to address these concerns.  The JAUGS 

Working Group was tasked with developing an initial standard for interoperable 

unmanned ground systems.  In 2002, the charter of the JAUGS Working Group was 
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modified such that their efforts would extend to all unmanned systems, not only ground 

systems.  The standard was therefore renamed Joint Architecture for Unmanned Systems 

(JAUS). 

Unmanned systems are becoming increasingly popular.  In fact, large U.S. 

government acquisition programs such as Future Combat Systems (FCS) and Man 

Transportable Robotic Systems (MTRS) show that unmanned systems are here to stay.  

The Future Combat Systems (FCS) program is an ambitious multi-billion-dollar program 

with a goal of integrating autonomous, semi-autonomous, and tele-operated systems into 

the battlefield of tomorrow.  Man Transportable Robotic Systems (MTRS) is a large 

multi-million-dollar program that requires a large number of tele-operated unmanned 

systems for use in the task of explosive ordnance disposal (EOD).  Both the FCS and 

MTRS programs require systems that can communicate with one another (operator 

control units to vehicle or inter-vehicle) using a shared language.  This language (JAUS) 

is the subject of our study. 

Currently, JAUS supports tele-operation; and, to an extent, primitive levels of 

semi-autonomy.  Technological innovations in the areas of sensors, sensor processing and 

fusion, perception, and intelligence have advanced robotics so much that demands that 

were not long ago far-fetched are becoming a reality.  To this end, JAUS must adapt to 

meet the growing requirements of the semi-autonomy and autonomy camps of the 

unmanned systems community.  Types of autonomous behaviors are as numerous as 

human behaviors.  However, the next steps in the natural progression beyond tele-

operation are assisted tele-operation and autonomous navigation and obstacle avoidance. 
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It is as difficult to define a new all-encompassing language for unmanned systems 

as it would be for humans.  In the context of a particular mission, however, it is possible 

to develop a syntax that can be used to communicate relevant information.  By initially 

limiting the scope of JAUS and incrementally adding functionality, a robust language is 

being built. 

The focus of our study was on allowing JAUS-based unmanned systems to share 

geospatial data.  These geospatial data are needed to support the tasks of obstacle 

detection, obstacle avoidance, and path planning among multiple JAUS subsystems.  The 

concept of the world model helps to put this work into perspective.  Meystel and Albus 

[18] defined the world model as  

the intelligent system’s best estimate of the state of the world.  The world model 
includes a database of knowledge about the world, plus a database management 
system that stores and retrieves information.  The world model also contains a 
simulation capability that generates expectations and predictions.  The world model 
provides answers to requests about the present, past, and probable future states of 
the world.  The world model provides this information service to the behavior 
generation system element in order to make intelligent plans and behavioral 
choices.  It provides information to the sensory processing system element to 
perform correlation, model matching, and model-based recognition of states, 
objects, and events.  It provides information to the value judgment system element 
to compute values such as cost, benefit, risk, uncertainty, importance, and 
attractiveness.  The world model is kept up to date by the sensory processing 
system element. 

A world model presents unending directions to investigate.  No doubt, many such 

investigations have begun.  Our study focuses on the database of knowledge.  We 

examined how the data are stored inside the database, and how databases can share data 

using a common language.  In the context of JAUS, our study presents a first-generation 

standard for sharing a database of knowledge.  Because unmanned systems used in the 

JAUS community are outdoor vehicles (and because of the desired tasks) these world 

model databases store geospatial data.  A review of the relevant literature formed a solid 
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basis for creating this standard.  We also introduced the implementation of a perception 

system. 

 

Figure 1-1.  Example of the processes leading up to higher-level planning 

Geospatial data generated by an unmanned system are only as good as the system’s 

sensors and its sensor fusion and registration methods.  Also important is what is done 

with these geospatial data after they have been fused and registered (high-level planning 

and intelligent behaviors).  These important issues fall outside the scope of our study.  

Figure 1-1 shows some of the processes leading up to high-level planning.  Figure 1-2 

shows how our study fits in.  The message-set generated by this study will allow different 

databases to share knowledge among themselves or with higher-level planning processes. 

 
Figure 1-2.  How our study fits into the higher-level planning process 

1.2 Research Problem 

Our study takes its direction from the following research problem. 

Given the experience and knowledge gained from examining current methods of 
modeling geospatial data within the unmanned systems and geographic information 
systems (GIS) communities and from implementing a perception system for an 
unmanned ground system, create a first generation geospatial data-sharing method 
for unmanned systems.  Present this in a format consistent with the Joint 
Architecture for Unmanned Systems (JAUS) messaging framework. 

This is a broad and open-ended topic.   However, it must be addressed.  As the 

capabilities of JAUS are extended, being without a method for communicating even the 

most basic forms of obstacle data would be a severe limitation.  The primary purpose of 
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the standard presented in our study is to support mission planning.  However other 

applications (such as data visualization) also benefit.   

The contribution of our study is a first-generation method recommended for sharing 

data needed by state-of-the-art real-world, unmanned systems.  The recommendations 

may be seen as guidelines for a first attempt (at least within the JAUS community) to 

allow multiple disparate unmanned systems (from different organizations, with 

completely different perception implementations) to share data.  

 

 



CHAPTER 2 
REVIEW OF RELEVANT LITERATURE 

The most difficult behaviors for unmanned systems are perception and reasoning.  

Reasoning for an unmanned system is highly dependent on the quality of the estimation 

of the environment in which the unmanned system operates.  This estimation is often 

used to support higher level behaviors performed by either the unmanned system or a 

human operator through tele-operation.  Each system typically has its own method for 

modeling and sharing data.  As we move towards increased interoperability among 

unmanned systems from different vendors, work must be done to bridge the gap between 

different methods of representing sensed data and providing those data to disparate 

unmanned systems.  Again, this is the focus of our study; to provide a first generation 

standardized method for modeling the environments that unmanned systems operate in 

and then providing those data to other concerned manned or unmanned systems. 

Much work has been done in recent years to move toward true interoperability 

between unmanned systems.  One of the major efforts towards reaching this goal is the 

Joint Architecture for Unmanned Systems (JAUS).  JAUS is a standard that defines the 

format of messages that travel between unmanned systems.  Since it is fast becoming the 

standard for military unmanned systems, JAUS provides a suitable base upon which to 

build a first generation world modeling standard for unmanned systems. 

2.1 Joint Architecture for Unmanned Systems (JAUS) 

The Joint Architecture for Unmanned Systems (JAUS) is a messaging standard 

being developed with overall goals of reducing life cycle costs, enabling fast integration 
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of new technologies, and facilitating interoperability amongst heterogeneous unmanned 

systems.  In 1998, the Office of the Secretary of Defense (OSD) chartered the Joint 

Architecture of Unmanned Ground Systems (JAUGS) Working Group and tasked this 

working group with developing a common model for messages used for controlling and 

monitoring processes within unmanned ground systems.  Now the Joint Architecture for 

Unmanned Systems (JAUS), the working group is tasked with expanding the standard to 

the entire domain of unmanned systems.  This group is currently represented by a diverse 

group of members from government, industry, and academic institutions.  By having a 

wide range of input in developing the standards, JAUS is better prepared for wide 

acceptance by the unmanned systems community. 

2.1.1 Tenets of JAUS 

To ensure the flexibility, extensibility, and ultimately the longevity of the emerging 

JAUS standard, it was developed with four main tenets.  These are: technology 

independence, hardware independence, platform independence, and mission 

independence [16]. 

The technology independence of JAUS assures that the messages that compose the 

JAUS standard as well as the methods for transporting the messages are not dependent on 

any past, present, or developing standard.  For example, many JAUS implementation use 

the user datagram protocol (UDP) and the internet protocol (IP) for data transmission.  

Other implementations may, however, use asynchronous serial communications links 

such as EIA/TIA 232.  There may be cases where one communications method is 

preferred over another.  By restricting the dependence on a communications technology, 

JAUS leaves this decision to the system developer and thus remains very flexible.  By 

defining only the messages to be communicated, JAUS will remain relevant over time. 
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The Hardware Independence rule is similar to the technology independence 

requirement.  JAUS does not rely on knowledge of the structure of an unmanned system.  

There are no assumptions about the type of platform or the contents of the platform.  So 

long as a system has adequate hardware to create, receive, process, and respond to the 

standardized JAUS messages, it is considered to be compliant with the specification. 

Platform independence is the third tenet of JAUS.  There are no assumptions about 

the type of systems that will use JAUS.  The JAUS standard is just as useful for large 

tanks as it is for miniature microcontroller based unattended sensors.  Surely as systems 

become more embedded, the read only memory (ROM), random access memory (RAM), 

and computing resources available decrease.  Therefore an embedded system is less 

likely to be able to support large complex JAUS messages.  This is acceptable as JAUS is 

very flexible with respect to the messages that each system must support.  With the 

exception of a small number of core input and output messages, JAUS allows systems to 

use only the messages (as well as fields within those messages) that they need to perform 

their function. 

JAUS also does not presuppose that the unmanned systems based on the 

specification are designed for any particular mission.  This is the mission independence 

tenet of JAUS.  By defining a comprehensive message set, it is hoped that JAUS 

developers can assemble systems that can complete any mission.  Surely this is 

intractable, but with the guidance the diverse membership of the JAUS working group, 

JAUS has a firm foundation on which to build. 

2.1.2 System Structure of JAUS 

The Joint Architecture for Unmanned Systems consists of a number of hierarchical 

elements that work together to form a complete JAUS compliant unmanned system.  The 
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lowest level of abstraction within JAUS is the component.  Going up the chain of 

complexity, a JAUS node consists of multiple components, a subsystem consists of one 

or more nodes, and a JAUS system consists of one or more subsystems.  Figure 2-1 

shows the structure of a JAUS system.  Not show in this figure is the concept of multiple 

instances of a component.  This feature is included in JAUS to support component 

redundancy. 

 

Figure 2-1.  System structure of JAUS 

The component encapsulates a specific function and the input and output messages 

necessary to command, control, and monitor the component.  For example, the JAUS 

Primitive Driver component is responsible for the low-level command and control of an 

unmanned system.  It controls and reports current status of the lowest level devices on the 

platform and reports platform specific data such as platform name and dimensions.  

Another component, the JAUS Global Pose component, interfaces to a device or a 

number of devices that are capable of providing the platform with its current global 

position, orientation, and orientation rate information.  These are just two examples of 
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JAUS components.  The JAUS Reference Architecture currently defines 26 components, 

each with its own specific function.  The Reference Architecture allows up to 254 

components to operate within a JAUS node. 

A node is a single computing entity that consists of one or more JAUS components 

running in a tightly coupled manner.  In this context, tightly coupled implies that the 

computing entities are not linked by any external connections.  Instead, they are 

connected internally.  This could be by function calls or shared memory, for example.  If 

two or more components are to be linked by an external communications medium, they 

should be considered separate nodes.  The JAUS standard currently allows up to 254 

nodes within a subsystem. 

A subsystem is device that performs a function through the synergy of the 

component containing nodes within it.  There must be at least one node within a 

subsystem.  This node may contain all the components necessary for the subsystem to 

perform its function.  The subsystem may also contain a number of nodes that each 

provide components necessary for the subsystem to perform its function.  The JAUS 

standard currently allows up to 254 subsystems to operate within a JAUS system. 

A system consists of one or more subsystems working together for some useful 

purpose.  This is the highest level within the JAUS hierarchy.  JAUS currently does not 

permit communications between different JAUS systems.  Within a system, however, any 

component, node, or component may communicate with any other component, node, or 

subsystem. 

The hope is that the JAUS standard is generalized enough that it will not inhibit the 

creativity of the engineers and scientists developing these systems.  Of course it is not 
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possible to account for all possible unmanned system scenarios.  Because of this, the 

JAUS standard has been developed to allow for the development of user-defined 

components.  The idea is that as these user-defined components mature and their 

usefulness is recognized by the JAUS community, they would be incorporated into the 

JAUS Reference Architecture.  What is most important overall about JAUS is that it 

standardizes the interface between these components.  As unmanned systems become 

more and more common place, without JAUS or some industry-wide JAUS-like standard, 

the interoperability issues will only be compounded.   

2.1.3 World Model Subcommittee for JAUS 

In October 2002, the Joint Architecture for Unmanned Systems Reference 

Architecture Committee’s World Model Subcommittee was established to address the 

growing need within the unmanned systems community for a messaging architecture that 

allows multiple heterogeneous unmanned systems to share geospatial data.  The task of 

this subcommittee was to develop the methods to allow modeling and sharing of 

geospatial data within the JAUS framework.  For JAUS, the primary purpose for 

modeling and sharing of these data is to support the tasks of mission planning and 

distributed mapping for autonomous systems.  JAUS is focused on the practical approach 

to unmanned systems and therefore so should a JAUS standard for geospatial data 

modeling. 

2.2 Real-Time World Modeling Methods 

The field of mobile robotics is generally interested in real time world modeling 

methods.  Typically these world modeling methods support the task of reflexive obstacle 

avoidance whereby an unmanned system uses an instantaneous view of the environment 

to effect change in its current mission.  For example, an unmanned system may be tasked 

 



12 

to autonomously navigate to a given waypoint without colliding with anything along the 

way.  Similar to a human reflexively reacting to a sudden undesired condition, an 

unmanned system given this task may reflexively respond to obstacles that appear within 

the field of view of its sensors.  Often these methods require very little modeling or 

processing of the sensor data.  Of paramount concern is the safety of the systems. 

It is often desired or necessary to have unmanned systems accumulate a model of 

the environment in which they operate.  This may simply be for the sake of building an 

accumulative map of the environment or it may be to allow the unmanned system to 

make a more informed decision should it decide that it needs to modify its current 

behavior in order to successfully complete its given task.  For example, if an unmanned 

system can perceive the environment at a distance that extends far beyond a range at 

which the system must act reflexively to maintain the safety of the system, those 

additional data could be used to reactively re-plan a path that avoids the hazard 

completely.  At the very least, an accumulative model of the environment would provide 

the system with the ability to, should it have to act reflexively, choose the best long term 

plan.   

Typically both reflexive and reactive obstacle avoidance systems use a tessellated 

raster grid based data structure to represent the environment.  These raster grids are most 

commonly used for real-time world modeling because it is simple to project the sensor 

view into a two-dimensional Cartesian grid. 

2.2.1 Raster Occupancy Grid 

Sensors are all prone to errors that affect the quality of their data.  Some of the 

sensors, such as radar and sonar, have wide fields of view, but very low resolution within 

their fields of view.  To handle the issues of uncertainty and errors in the sensor data, the 
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concept of the occupancy grid was introduced by Elfes [13].  The raster occupancy grid is 

a tessellated grid used to accumulate real-time sensor data.  A probabilistic model of the 

data from the sensor is generated and is used to update occupancy probabilities within the 

raster grid.  The grid cell values for the occupancy grid represent the probability that an 

object exists or does not exist in the area covered by the cell.  Updates are made to the 

patches of the grid that represent the field of view of the sensor.  Even though this idea 

was pioneered by Elfes in 1989, it is still the most common implementation for real-time 

sensor data accumulation.  It is especially useful for supporting the task of obstacle 

avoidance.  

Over the years there have been several extensions on the work done by Elfes.  One 

extension to Elfes’s approach was introduced by Borenstein [6].  Rather than updating a 

large patch of the occupancy grid within the field of view of the sensor, this method 

updates a single cell along the major axis of the sensor.  Borenstein shows that as the 

unmanned system traverses an area, this method is cheaper computationally and achieves 

similar results.  Novick [22] extended the concept of the raster occupancy grid update 

method.  His approach was to apply a nonhomogenous Markov chain based method to 

update grid cells. Using this approach, Novick shows that this method is a significant 

advance in sensor fusion for outdoor vehicles.  Both Borenstein and Novick’s methods 

use raster grids to represent their data. 

2.2.2 Real Time Terrain Mapping 

An extension of the occupancy grid methods is the real-time terrain mapping 

method.  This method attempts to generate a model of the Earth’s surface in a tessellated 

data structure.  This two and a half dimensional representation assigns a height to each 
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grid cell as opposed to an occupancy probability.  Crosetto and Crippa [10] presented a 

method for fusing stereo and radar data to form real-time elevation maps.   

2.2.3 Raster Traversability Grid 

The traversability grid concept is an extension of the both raster occupancy grid 

and terrain mapping methods.  In this implementation, the value in a grid cell represents 

the degree to which the area covered by the grid cell is considered drivable by the 

vehicle.  Unlike the previous two methods, occupancy grids and terrain mapping, the 

traversability method is dependent on vehicle parameters.  This is because the concept of 

traversability is inherently platform dependent.  For example, an area occupied by a small 

rock may be deemed untraversable by a small unmanned system.  However, a larger 

unmanned system confronting the same rock may consider the region less than desirable, 

but still traversable.  Vehicle parameters that are often used traversability determination 

include the maximum allowable rotation angles of the platform about its three axes.  

Using a model of the terrain in which an unmanned system operates, it is possible to 

calculate the pose of the unmanned system along a path given the vehicle’s physical 

parameters. 

2.3 A Priori World Modeling Methods 

An a priori world model data store is one that contains data that were accumulated 

prior to use by an unmanned system.  For example, if an unmanned system maps, this 

map could be stored for future use by the unmanned system or transferred to another 

unmanned system to allow it to make mission decisions.  This is an example of the use of 

raster data a priori.  This is not the typical use of a priori within unmanned systems 

because of possible errors in the map making process.  Instead, vector methods are used 

more frequently for initial data.  An example of the use of this modeling method is 
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presented by Pasha [23].  The model of the world used is based on a polygonal 

representation as shown in Figure 2-2.  In this work, Pasha models an environment in 

which an unmanned system must operate.  The locations of static obstacles are known 

and can be used during the path planning process.  Compounding the problem however, 

is the presence of numerous radiation sources.  Given the obstacles and location and 

strength of radiation sources, a path plan is computed that most efficiently gets the 

unmanned system to its desired destination while minimizing its exposure to radiation. 

 

Figure 2-2.   Path planning in a bounded radiation environment (Source: A. Pasha, "Path 
Planning for Nonholonomic Vehicles and Its Application to Radiation 
Environments," Master of Science Thesis. Department of Mechanical 
Engineering: University of Florida, 2003, p. 59, Figure 6-9) 

2.4 Geographic Modeling Methods 

The areas in which unmanned systems operate are typically assumed to be simple 

planar surfaces.  As unmanned systems begin to be introduced into real world outdoor 

applications, this assumption can not hold.   
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2.4.1 Global Coordinate Systems 

When moving from the laboratory to real world, outdoor applications that cover 

large distances, the methods presented in Section 2.3 must be modified.  Those methods 

assumed that the unmanned system was operating in a perfectly planar environment; 

where, in the case of raster data, the cells were square and the coordinate system 

Cartesian.  The Earth is not flat and, therefore, when unmanned systems operate over 

large distances, they must take the Earth’s true shape into consideration.   

There are three commonly used models of the Earth’s shape.  They are actual shape 

of the Earth’s surface, the ellipsoid, and the geoid [7].  Because of the large variations in 

the Earth’s surface, it is difficult to develop a true mathematical model for it.  Therefore, 

the other two methods of modeling, the ellipsoid and the geoid, are typically used. 

The ellipsoid is a mathematical model of the shape of the Earth.  The ellipsoid 

(Figure 2-3) is defined by its semi-major and semi-minor axes.  Over the years different 

Ellipsoidal models of the Earth have been established based on the best known shape of 

the Earth.  Currently the most commonly used model is the World Geodetic System as 

defined in 1984 (WGS84).  This model defines the semi-major axis r1 as 6,378,137.0 

meters and the semi-minor axis r2 as 6,356,752.3 meters [7]. 

 

Figure 2-3.  Ellipsoidal model of Earth 
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Once the Earth ellipsoidal model is established, a geographic coordinate system 

must also be established.  Because of the spherical shape of the Earth, a spherical 

coordinate system is used to define points on the ellipsoid.  A point on the ellipsoidal 

surface is described in spherical coordinates by a latitude value in degrees, a longitude 

value in degrees, and a height or elevation value in feet or meters.  As shown in Figure 

2-4, latitude values increase going north and range from -90° at the South Pole, to 0° at 

the Equator, to 90° at the North Pole.  Longitude values start at 0° at the Prime Meridian 

and range between plus and minus 180°.  The values go negative going west and positive 

going east. 

 
Figure 2-4.  Earth-centered global coordinate system 

Bolstad [7] describes the geoid as a three-dimensional surface that has a constant 

pull of gravity at each point.  This equipotential surface is important for establishment of 

a vertical datum.  In fact, this surface typically defines what is referred to as mean sea 

level [36].  If the Earth was covered by only water and no land, gravity would pull the 

water such that the geoid and the sea level would be the same [36].  This is how mean sea 

level is defined for land areas that are not near the sea.  As with the ellipsoid model, 
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locations are referenced by latitude, longitude, and elevation.  The difference is that the 

ellipsoid model uses the surface of the ellipsoid to establish elevation whereas this 

method measures the elevation of the geoid with respect an ellipsoid. 

2.4.2 Projected Coordinate Systems 

While true global coordinates are expressed as points of latitude, longitude, and 

elevation, it is more intuitive to model the world in Cartesian coordinates.  This is 

particularly true when extending the methods in Section 2.3 to outdoor applications.  In 

order to use a Cartesian coordinate system, methods have been established to 

mathematically project global, spherical coordinates onto a rectangular grid.   

Because it is not possible to exactly represent this three-dimensional surface in 

two-dimensions, there are different mathematical projections that preserve different 

features of the three-dimensional surface.  Typical features that are preserved are local 

shape, area, distance, and true direction.  Conformal projections preserve local shape, 

equal area projections preserve area, equidistant projections preserve distance to some 

points, and true-direction projections preserve true-course between certain points [14]. 

Projections are not only classified by the types of features they preserve, they are 

also classified by the type of method used to create them.  The main classifications are: 

cylindrical, conic, and planar or azimuthal [14].   

Cylindrical projections convert from the Earth’s three-dimensional spherical 

coordinate system to a cylindrical coordinate system.  After the projection, the cylindrical 

representation is sliced so that it forms a two-dimensional rectangular representation of 

the Earth’s surface.  Conic projections convert from the Earth’s three-dimensional 

spherical coordinate system to a conic coordinate system.  After the projection, the conic 

representation is sliced so that it forms a two-dimensional representation of the Earth’s 
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surface.  Planar or azimuthal projections convert from the Earth’s three-dimensional 

spherical coordinate system directly to a planar coordinate system.  There are numerous 

types and variation of each type of projection.  Bolstad [7] and ESRI [14] provide qn in-

depth discussion of these projections and many of their variations. 

2.4.3 Universal Transverse Mercator projection 

The Universal Transverse Mercator (UTM) projection is a modification of the 

cylindrical Mercator projection.  This projection is a conformal projection which 

preserves local shape of objects [14].  It creates minimal distortion of areas, local angles, 

and distance [14].  Unlike the cylindrical projection shown in Figure 2-5, the UTM 

projection divides the cylinder into 60 vertical zones.  Each UTM zone is exactly 6 

degrees of longitude wide and is further divided into north and south parts [7].  The UTM 

zones each have their own coordinate system which is completely different than the 

coordinate system of other zones.  Because of this, it is difficult to use the UTM 

projection when traveling between UTM zones. This is rarely a problem with unmanned 

ground systems because the six degree UTM zones are much larger than what would be 

reasonably expected for a system of this type to traverse.  It may be an issue with 

unmanned aerial vehicles, but this is something that can be taken into account by the 

system developers.  

What is most attractive about the UTM projection is that it is a projection that is 

defined globally.  In each zone, it is able to maintain shape, area, direction, as well as 

distance.  These are all features that are important for unmanned vehicles during 

navigation and world modeling tasks.  The reader is referred to [7] for a more in-depth 

discussion of the Universal Transverse Mercator projection, its applications, and 

limitations. 
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2.5 Georeferenced World Model Data 

The modeling methods presented in Sections 2.3 and 2.4 are dependent on a planar 

assumption for the environment that the unmanned system operates in.  In these 

applications, the coordinate systems are Cartesian with the origin being based on an 

arbitrarily chosen local coordinate system.  As discussed in Section 2.4, these data can be 

stored and used as a priori data from other unmanned systems.  What is more common, 

however, is to use data from third party sources.  The most important  

2.5.1 Raster Data Stores 

Raster Data Stores are those that provide tessellated grid based geospatial data.  

Examples of the raster data stores include Digital Elevation Model (DEM), Digital 

Terrain Elevation Data (DTED), Digital Raster Graphics (DRG), Digital Orthophoto 

Quadranges (DOQs).  This list is by no means exhaustive.  There are many more types of 

raster data stores.  Each type of data store provides different types of data at different 

resolutions possibly using different projections. 

Figure 2-5 shows the high-level format of Digital Elevation Model (DEM) data.  

DEM data use the UTM projection to create a Cartesian coordinate system.  These DEM 

data represent a 2.5D surface.  The resolution of DEM data is 30 meters. 

2.5.2 Vector Data Stores 

Vector Data Stores are those that provide geospatial data that are referenced by 

points, lines, or vertices of polygons.  Types of vector data stores include Digital Line 

Graphs (DLG), State Soil Geographic (STASGO), and Topologically Integrated 

Geographic Encoding and Referencing (TIGER).  This list is by no means exhaustive.  

There are many more types of vector data stores available from third parties.   
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Figure 2-5.  Example format of digital elevation model  

Figure 2-6 shows an example of Digital Line Graph (DLG) data being extracted 

from a Digital Orthophoto Quadrangle.  The benefit of this extraction is that the resulting 

DLG vector data size is smaller than the DOQs data size. 

2.6 Distributed World Modeling Methods 

There are very few major efforts attempting to tackle the difficult task of 

distributed world modeling.   Two of the current efforts are the Spatial Data Transfer 

Standard (SDTS) and the Geography Markup Language (GML).   

2.6.1 Spatial Data Transfer Standard (SDTS) 

SDTS is an open standard being developed by the Unites States government for use 

in geographic information systems.  One of the reasons for developing this standard is 

that there are various types of geospatial data available based of different Earth models 

and projections with each having different errors associated with them.  SDTS seeks to 

provide a method that allows a complete data transfer with all necessary information 
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associated with those data needed to incorporate them into other data systems.  SDTS 

specifies the entire process of storing and sharing geospatial data.  This ranges from the 

methods for modeling raster and vector geospatial data down to the way that data are 

stored in digital files.  SDTS is also a very broad standard that is able to support different 

models of the Earth, different map projections, and different method of modeling the 

data.   

A B
 

Figure 2-6.   An example of USGS source data. A) USGS Orthoimage B) Extracted 
digital line graph 

The SDTS is divided into six profiles that completely define the standard.  The first 

three parts define the logical specification, spatial features, and data encoding, 

respectively.  The other parts are called profiles.  Each profile provides instructions for 

using the base SDTS rules, parts one through three, to different types of geospatial data 

[32]. 

Part four of the SDTS standard is the Topological Vector Profile (TVP).  This 

profile allows transfer of geospatial vector data described by vector geometry and 
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topology.  This profile allows data to be geometrically described using points, lines, 

polygons, as well as combinations of these.  The Topological Vector Profile is useful for 

transferring digital line graph (DLG) data such as those presented in Figure 2-9 [3]. 

Part five of the SDTS standard is the Raster Profile and Extensions (RPE).  This 

profile supports various types of raster formatted geospatial data.  This includes 

Georeferenced orthoimages, grid formatted terrain data such as DTED and DEM, as well 

as any type of tessellated geospatial data.  RPE does not support data of a higher 

dimension that two and a half (such as terrain data) [5]. 

The Last part of the current version of SDTS is the Point Profile.  This profile 

provides support for high precision point data only.  While the Topological Vector Profile 

does support point data, it does not at high enough precision for some applications.  The 

Point Profile supports up to 64 bits of precision whereas the TVP only supports up to 32 

bits of precision [4].  All six parts of the SDTS standard combine to form a powerful and 

comprehensive method for modeling and distributing geospatial data. 

2.6.2 Geography Markup Language 

The Geography Markup Language (GML) is a broad standard that supports raster 

and vector data in 2, 2.5, and 3 dimensions.  It also supports more types of complex 

shapes and surfaces than are needed for unmanned system world modeling.  It is able to 

support data based on different projections as well as different Earth models [11].   

GML is an extension of the Extensible Markup Language (XML).  XML, like the 

Hypertext Markup Language (HTML) commonly used for transfer of web pages, 

supports tags that specify the types of data included in the document.  For XML the tags 

are defined by the document creator for the type of data included.  HTML specified all of 

its tags a priori.  Also unlike HTML, XML and subsequently GML, does not mix the 
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data content with the formatting of the content.  For GML, the descriptors (or tags) are 

geospatial data related.  While XML provides a very loose structure for the types of data 

described, GML places restrictions on XML by specifying the methods for geometrically 

modeling the data.  If GML based system developers associate different attributes with 

the geospatial data types, they will at the very least be able to understand each other’s 

data at a geometric level [17]. 

Both SDTS and GML are both adequate methods for modeling geospatial data and 

sharing those data, but they are not exactly appropriate for JAUS based unmanned 

systems.  Of the two, GML is more appropriate since it is based on the powerful XML 

standard which is designed for real-time transfer.  By defining additional XML tags, it is 

possible to make data store modifications in real-time rather than on a per XML 

document basis.  The downside of GML is that it is all ASCII text based and requires 

extra characters to support its extensibility.  Because some of the tags are many 

characters long, this translates to additional bandwidth being used for the support 

characters.   

SDTS is not appropriate for use with unmanned systems where bandwidth 

utilization should be minimized.  Because SDTS transfers are to be all self-contained 

with all necessary data included, this is not suitable for real-time data transfer.  A real-

time world modeling message set should support the ability to make individual changes 

to the data store in real-time rather than requiring changes to be transmitted via an 

updated version of all the data in the data store. 

This work is interested in using the power of the JAUS infrastructure to support 

distributed world modeling.  Since JAUS defines the structure of its messages a priori, 
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beyond its 16-byte header, JAUS does not require any other bytes to support its 

infrastructure.  All of the data after the JAUS header are values for the field described in 

the JAUS message definition.  Rather than incorporating a completely different, non-

optimal standard into JAUS for world modeling, the world modeling standard builds on 

the framework developed by the JAUS Working Group.  

 

 

 



CHAPTER 3 
SMART SENSORS 

While setting out to develop a standard for modeling the various types of geospatial 

data presented in the preceding chapter, a distributed set of world models was developed.  

These world models were tightly coupled to their associated sensors and therefore were 

initially considered to be smart sensors. 

3.1 Smart Sensor Architecture 

The smart sensor architecture was originally developed for the perception system in 

the Team CIMAR NaviGATOR which is represented Figure 3-1.  The NaviGATOR was 

developed as an entry to the 2004 Defense Advanced Research Projects Agency 

(DARPA) Grand Challenge.  Held in March of 2004, the DARPA Grand Challenge was a 

first of its kind unmanned ground vehicle (UGV) competition.  The thrust of this 

challenge was to develop a UGV that could autonomously navigate and avoid obstacles 

over the approximately 140 miles from Barstow, California to Primm, Nevada - crossing 

the Mojave Desert.   

Team CIMAR consisted of graduate students and engineering staff from the 

University of Florida’s Center for Intelligent Machines and Robotics (CIMAR) and 

Logan, Utah based Autonomous Solutions, Inc.   

Recognizing the power and flexibility afforded by the use of JAUS, Team CIMAR 

used it throughout the NaviGATOR and therefore developed, at the time, one of the only 

completely autonomous systems based on the Joint Architecture for Unmanned Systems 

(JAUS).  The exception to this was the Navigator’s perception system where the 
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messages that defined the smart sensor messaging architecture were only loosely 

modeled after the JAUS standard and the JAUS World Modeling Subcommittee’s 

forthcoming draft message set which is presented in Chapter 4 of this document. 

The smart sensor architecture is a networked system of distributed, modular, 

heterogeneous sensor units that all use a common messaging and network interface to 

share data.  Each smart sensor processes data specific to its associated sensor modality 

and determines region traversability using a suitable traversability metric as determined 

by the sensor system developer.  These geospatial traversability data are shared within the 

perception system and provided to higher level planning components to allow them to 

make intelligent decisions such as obstacle avoidance. 

 

Figure 3-1.  Team CIMAR NaviGATOR DARPA Grand Challenge entry vehicle 
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The smart sensor units are considered “smart” because they not only process their 

sensor data, they also provide a logically redundant interface to other components within 

the system.  The impetus behind the creation of this smart sensor architecture was to 

allow sensing system implementers to develop their sensing technologies independent of 

one another and then have them, with minimal effort, seamlessly integrate their work to 

form a robust perception system.  The JAUS-like messaging infrastructure and logical 

redundancy of the smart sensors afforded this flexibility.  Even though their 

implementations and sensor modalities are different, these sensor units are logically 

redundant in that their messaging interfaces are identical [19].  The idea was that each 

sensor implementer best knew how to process and register their own sensor data.  Rather 

than relying on a probabilistic model of the sensor to homogenize the sensor data on one 

system, this implementation expects the sensor data to be homogenized before they are 

fused.  Once their data were available, the smart sensors would publish the data to a 

central component, the smart sensor arbiter, whose responsibility would be to fuse the 

data from all of the smart sensors.  

The output of the smart sensors is a measure of region traversability cost.  This cost 

is based on a sensor-specific traversability metric being applied to the data from a 

physical obstacle detection sensor.  Behaviors of this type, associating a cost to an 

attribute based on a metric, are called value judgment [18].  Smart sensor developers 

were permitted to use any sensor modality that presented data that could be processed to 

provide sufficient traversability value judgment.  For this implementation, these included 

stereo vision, stationary laser measurement system, and monocular vision based smart 

sensors all developed by researchers at the University of Florida.  A continuously rolling 
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laser measurement system based smart sensor was developed at Autonomous Solutions, 

Inc.   

While there are duplicate sensor types, the implementation of the associated smart 

sensor makes the data from the sensors quite unique.  For example, the stereo camera and 

monocular cameras use the same sensing modality however the difference is in the 

implementation of the smart sensors.  The stereo camera data are processed so that they, 

through the use of image rectification and correlation, provide a sparse three-dimensional 

representation of the environment within the field of view of the cameras.  Traversability 

is determined by considering the stereo data as real-time terrain data and applying value 

judgment.  The implementation of the monocular camera based smart sensor utilized 

color and cluster affinity in RGB-space to classify image pixels that belonged to 

traversable surfaces. 

Once the individually developed smart sensors were completed, a predefined 

messaging architecture was used to transmit the traversability data within the perception 

system.  In order to support true interoperability, however, electrical and transport layer 

issues also had to be addressed.  These issues will be address later in this chapter. 

3.2 Smart Sensor Architecture Components 

There are three major types of components that make up the perception system’s 

smart sensor architecture.  These are the smart sensor, smart sensor arbiter, and reactive 

planner components.  Figure 3-2 shows the perception system components as well as the 

component interconnects. 

3.2.1 Smart Sensor Component 

The smart sensor is a modular perception system component that provides an 

interface between a physical sensor and the smart sensor network.  It encapsulates a 
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physical sensor, the hardware necessary to process the sensor data, a method for 

determining region traversability from the processed sensor data, a standardized 

messaging interface, and a communications link.   

 

 

Figure 3-2.  Organization of the smart sensor-based perception system 

A smart sensor is modular in that it shares the same logical interface with all other 

smart sensors.  With the exception of a single field in the message header, the source 

component identification number, the output format of each smart sensor is identical to 

that of all other smart sensors.  This allows any smart sensor to seamlessly replace any 

other.  

Internally, the smart sensor maintains a tessellated traversability grid of a size 

specified by the predefined range and resolution of the grid.  As with the occupancy and 

traversability grids introduced in Chapter 2, this grid maintains a fixed orientation and 
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remains vehicle centered.  In this implementation, the grid maintains a north-east 

orientation.   

As the vehicle moves, the grid is translated in discrete steps to compensate for the 

vehicle’s movement.  The translation of the vehicle is determined from the previous and 

current positions of the vehicle as provided by a global positioning system (GPS) 

providing coordinates in the WGS84 coordinate system.  The coordinates are projected 

from global to Cartesian coordinates using the Universal Transverse Mercator (UTM) 

projection.  The difference in position, in meters East and North of the origin, is 

converted to a translation of grid rows and columns.  To assure that the vehicle is always 

centered in the center cell of the traversability grid, the grid dimensions, rows and 

columns, are required to be odd. 

The geospatial traversability data are registered by using the vehicle’s orientation to 

project the sensor data into the two-dimensional traversability grid.  As the vehicle 

translates and rotates, changes to the traversability grid are monitored.  As the values of 

cells change, the updated values are transferred to other systems to provide grid 

synchronization. 

3.2.2 Smart Sensor Arbiter Component 

The smart sensor arbiter has the responsibility of fusing data from the smart sensors 

and, through the synergy of the different sensor modalities, providing a better model of 

the world to the reactive planner component.   

In a complete smart sensor system, the arbiter component is the hub of all data 

traffic from the smart sensors.  As it receives traversability updates from the smart 

sensors, it immediately fuses the updated data with that from previous sensor updates.  

Generally, the method used to fuse the traversability data from the sensors is not 
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specified and is left to the implementer.  What is important is that the interface to the 

arbiter is consistent with the smart sensor message set and that the arbiter’s grid 

resolution is the same as the smart sensors’.  Maintaining a grid of equal size as the smart 

sensors is not required as it may be desirable to have a grid that extends well beyond the 

bounds of all of the smart sensor grids.  This allows the arbiter to maintain a larger local 

memory of the area perceived by all the smart sensors.  In a system with multiple 

subsystems, this functionality could be used for collaborative mapping of large areas. 

The smart sensor arbiter also includes a virtual component - the Region Clutter 

sensor.  This component provides a very fast indication of the saturation of non-

traversable areas within the unmanned system’s immediate vicinity.  This feature gives 

the higher level planning components information that allows it to modify the vehicle’s 

speed as it encounters cluttered areas.  By modifying the system’s travel speed, there may 

be adequate time to generate a plan to negotiate the non-traversable regions.   

The smart sensor arbiter also shares the same logical interface as the smart sensors.  

This allows smart sensor based perception systems to use a single smart sensor without 

the smart sensor arbiter or multiple smart sensors with the arbiter.  This flexibility is an 

asset especially in the development and debugging processes. 

3.2.3 Reactive Planner Component 

Within the smart sensor based perception system, higher level obstacle avoidance 

and vehicle travel speed control is the responsibility of the reactive planner component.  

The reactive planner component, using the JAUS communications network, receives the 

position, orientation, and orientation rates of the platform from the JAUS Global Pose 

and Velocity State components.  The reactive planner component then uses the smart 

sensor architecture messaging interface and the smart sensor network to transmit the 
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position and orientation updates to the smart sensors.  The same network is used to 

receive the smart sensors’ traversability data.   

As it is receiving traversability grid updates from either the arbiter or smart sensors, 

the reactive planner continuously searches for the optimal, lowest cost path through the 

accumulated traversability data.  The output of the reactive planner is a modified path 

plan for the unmanned system to execute.   

3.3 Smart Sensor Messaging Architecture 

In order to support the development of the components of the perception system, a 

standardized messaging interface was defined.  Its use was mandated for all components 

participating in the smart sensor based perception system.  This messaging interface was 

to a large degree based on the methodologies and messages established by JAUS. 

3.3.1 Smart Sensor Architecture Message Header 

To support message identification, routing, and transfer, a modified version of the 

standard 16 byte JAUS message header was created.  The JAUS header supports more 

functionality than needed by the smart sensor architecture.  Therefore the majority of the 

bytes within the header would not be needed.  Because of the volume of data transferred 

within the smart sensor system, any savings of would be beneficial.  Therefore the JAUS 

header was reduced so that all unnecessary header fields were removed.  Table 3-1 shows 

the format of the official JAUS message header.  Since the smart sensors communicated 

on their own network, this optimization had no effect on the JAUS based NaviGator 

network. 
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Table 3-1.  Standard JAUS sixteen byte message header 
 

 

Field # Field Description Size (Bytes) 
1 Message Properties 2 
2 Command Code 2 
3 Destination Instance ID 1 
4 Destination Component ID 1 
5 Destination Node ID 1 
6 Destination Subsystem ID 1 
7 Source Instance ID 1 
8 Source Component ID 1 
9 Source Node ID 1 
10 Source Subsystem ID  1 
11 Data Control (bytes) 2 
12 Sequence Number 2 
 Total Bytes 16 

The smart sensor development team made several assumptions about the data 

transfer process in order to justify the reduction in header size.  They are as follows: 

• Smart sensors are all contained within the same subsystem 
• Smart sensors are single component nodes 
• Smart sensors have distinct component identification numbers 
• Smart sensors have only one instance 
• Smart sensor message types are unidirectional 
• Smart sensors use the same version of the interface control document 
• Smart sensors do not use service connections 
• Smart sensors do not require message acknowledgment 
• Smart sensors transmit messages of the same priority 

 
The smart sensors are all contained within the same subsystem and the subsystem 

does not communicate spatial data to any other subsystem, therefore the fields for the 

destination and source subsystem identification numbers (fields 6 and 10, respectively) 

would be equal and would always remain static.  Removing these fields reduces the 

required header size by 2 bytes.   

The message header fields 5 and 9, node identifiers, may be removed due to the 

assumption that the smart sensors are single component nodes and that each smart sensor 
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has its own component identification number.  Because of these assumptions each 

component identification number must be coupled to one and only one node 

identification number.  Therefore specifying both the component and node identifiers 

would be redundant.  The removal of the destination and source node identifier fields 

saves an additional two bytes.  Therefore, the smart sensor components are addressed 

only by component identification numbers. 

Within the smart sensor system there is no redundancy of smart sensor 

implementations, therefore the header’s instance identification fields, 3 and 7, would 

never be used.  Removal of these fields results in a savings of 2 bytes.   

It is important to note that this redundancy assumption is specific to the smart 

sensor implementation where each individual smart sensor has its own component 

identification number.  In a true JAUS system, this would not necessarily be the case.  

They would be treated as redundant components since each smart sensor is just another 

instance of the same.   

Messages traveling down stream from the reactive planner component to the arbiter 

and smart sensors are position and orientation update messages.  Messages traveling 

upstream from the smart sensors to the arbiter and reactive planner are cell update 

messages.  The exception to this rule is the arbiter clutter sensor component, which will 

be discussed in greater detail later in this chapter.  Because message types are 

unidirectional and there is a priori knowledge of the system configuration, this 

assumption removes the need for the source component identification number and the 

message command code; a combined savings of three bytes. 
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The message properties field in the JAUS header provides important information to 

the receiving JAUS component.  This includes the version of JAUS Reference 

Architecture message set used to create the attached message as well as message type, 

acknowledgement, and priority information.  The last four assumptions have a direct 

impact on this message field by making it useless.  The assumption that the smart sensors 

are not using service connections also removes the need for the Sequence Number field 

of the JAUS header.  Combined, these four assumptions result in a savings of four bytes. 

The cumulative savings produced by the nine assumptions presented above is 13 

bytes.  In a system with a relatively large amount of bandwidth or less frequent raster 

geospatial data transfers, the thirteen-byte savings may not seem significant.  Since the 

message header must be attached to each message, however, when there is a large volume 

of data, as can be expected within the smart sensor architecture, the aggregate savings can 

be substantial.  The final three-byte header is show in Table 3-2.   

Table 3-2.  Smart sensor architecture message header 
Field # Field Description Size (Bytes) 
1 Source Component ID 1 
2 Data Control (bytes) 2 
 Total Bytes 3 

 
One of the strengths of JAUS is that the messages are develop completely separate 

from, and are not at all dependent on, the message header.  Because of this, the smart 

sensor messages that will be introduced may be transmitted using any message header 

that can be used to properly route the messages to their intended destination.  Again, the 

header size reduction presented in this section was made primarily for the purpose of 

saving bandwidth and computing resources.   
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3.3.2 Smart Sensor Architecture Message Set 

The NaviGATOR’s perception system, consisting of the components of the smart 

sensor architecture, provides a unique method for transferring and synchronizing raster 

formatted geospatial traversability data.  The structure of the messages within this 

architecture is based on the JAUS Reference Architecture message set.  They were 

designed to support the interoperability, extensibility, and logical redundancy required of 

the smart sensor architecture. 

Figure 3-3 shows the minimum number of component types needed for a complete 

smart sensor system.  It is considered complete because all of the core components are 

present; the reactive planner, arbiter, and smart sensor.  It is minimal because only one 

smart sensor is present.  In fact, this system is not particularly useful because the arbiter 

and the smart sensor’s internal traversability grid representations would be exactly the 

same.  Therefore, the arbiter should be used when there is more than one smart sensor 

present.   

Using the logical redundancy provided by the smart sensor architecture, a more 

efficient implementation of a single sensor based system is shown in Figure 3-4.  This 

showcases the power of the logically redundant interface as a smart sensor may replace 

the arbiter or any other smart sensor. 

There are three types of messages used within the smart sensor based perception 

system.  They are: 

• Report Vehicle State 
• Report Traversability Grid Updates 
• Report Region Clutter Index 
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Figure 3-3.   Minimally complete smart sensor-based perception system consisting of one 
instance of the core component. 

 

Figure 3-4.   Single sensor implementation of smart sensor-based perception system 
consisting of a single smart sensor synchronizing data with the reactive 
planner. 

The Report Vehicle State message communicates vehicle position, orientation, and 

orientation rate information.  Updates to the smart sensor or smart sensor arbiter 

traversability grid are transmitted through the use of the Report Traversability Grid 

Updates Message.  The Report Region Clutter Index message transmits an indication of 

the saturation of non-traversable areas in the immediate vicinity of the vehicle. 

3.3.2.1 Report vehicle state message 

The Report Vehicle State message, consisting of vehicle position, orientation, and 

orientation rate updates, is a combination of the JAUS Code 4402h: Report Global Pose 

and Code 4404h: Report Velocity State messages.  The position of the platform is given 
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in latitude, and longitude in accordance with the WGS84 standard.  The orientation and 

orientation rates are with respect to the vehicles coordinate system as defined by JAUS 

(Figure 3-5).   
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Figure 3-5.  Unmanned system coordinate system defined by JAUS 

 
To allow message types of variable size where only the desired data are 

transmitted, JAUS provides a presence vector.  This presence vector is an n-byte bit field 

with flags indicating which optional fields are present in a JAUS message.  For the smart 

sensor implementation, only the latitude, longitude, roll, pitch, yaw, roll rate, pitch rate, 

and yaw rate fields are needed from the JAUS Report Global Pose and Report Velocity 

State messages.  The remaining fields are not included in the transmitted message.  Since 
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these unneeded fields have been removed from this message contraction and there is a 

priori knowledge of the structure of this message, the presence vector was also removed.   

The benefit of this approach is that the Report Global Pose and Report Velocity 

State messages do not have to be sent separately with the 16 byte JAUS header attached 

to each.  An additional benefit to this approach is that the position, orientation, and 

orientation rate fields are synchronized; i.e. the message includes an instantaneous 

reading of both the position and orientation data. 

This Report Vehicle State message, Table 3-3, is 20 bytes in length, 23 bytes 

including the message header.  Fields 1 and 2 contain the latitude and longitude, 

respectively, as scaled integers.  Fields 3 through 5 contained the vehicle orientation and 

fields 6 through 8 contain the orientation rates.   

Table 3-3.  Smart sensor architecture's report vehicle state message 
Field # Name Type Units Interpretation 

1 Latitude 
(WGS 84) Integer Degrees 

Scaled Integer 
Lower Limit = -90 
Upper Limit = 90 

2 Longitude 
(WGS 84) Integer Degrees 

Scaled Integer 
Lower Limit = -180 
Upper Limit =  180 

3 φ (Roll) 
4 θ (Pitch) 
5 ψ (Yaw) 

Short 
Integer Radians 

Scaled Integer 
Lower Limit = -π 
Upper Limit = π  

6 Roll Rate 
7 Pitch Rate 
8 Yaw Rate 

Short 
Integer 

Radians 
per Second 

Scaled Integer 
Lower Limit = -32.767 
Upper Limit = 32.767 

 
3.3.2.2 Report traversability grid update message 

The Report Traversability Grid Update message provides a synchronization 

mechanism between the multiple distributed traversability grids.  This functionality is 

event driven and based on updates to the smart sensors’ traversability grids.  When a 

change is made to a traversability grid, the change is transmitted to the destination 
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component to synchronize the two grids.  By making the process event driven, bandwidth 

utilization is reduced over transmitting the entire traversability grid, especially when 

there are only a small number of changes to the traversability grid. 

The Report Traversability Grid Updates message is shown in Table 3-4.  The first 

two fields of the message are a latitude and longitude position stamp.  This position 

stamp represents the point with which the cell update values are referenced; the current 

location of the vehicle at the time the sensor data was processed.  Following the position 

stamp is a series of cell update three-tuples.  Each three-tuple represents the traversability 

grid update as an updated cell row, column, and traversability value. 

The traversability grid cell update values use the entire numeric range of a byte, 0 

to 255, to represent the traversability of the region represented by the cell.  A value of 

127 corresponds to an unknown traversability.  As the value approaches zero, exclusive 

of zero, the cell classification become more and more non-traversable.  Conversely as the 

value approaches 255, the classification is more traversable.  The grid cell value zero is 

reserved exclusively for the world model corridor data which is used to constrain the 

search for the lowest cost path through the traversability grid.   

This message allows all changes to be transmitted in one message, provided that 

the total message data size is less than the 65527 bytes that the smart sensor architecture 

header permits.  This limit is determined by the UDP/IP transport layer’s limit on the 

maximum number of payload data bytes that may be transmitted in a single transaction 

[24].  Should the Report Traversability Grid Update message exceed 65527 bytes, it 

should be broken into separate messages.  These separate messages should have the same 

latitude and longitude position stamp values as the first cell update message.  This 
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latitude and longitude position stamp is very important as it defines the origin of the cell 

changes.   

The total number of three-tuple cell updates being transmitted may be inferred from 

the header data bytes field by subtracting the eight bytes required by the position stamp 

and dividing the remainder by three. 

3.3.2.3 Report region clutter index message 

Within the perception system, there is a need to allow higher level components, 

particularly the Reactive Planner, to know the degree of saturation of non-traversable 

areas local to the vehicle.  The purpose of this is to allow the UGV to reduce its speed to 

allow it to successfully negotiate the traversable regions.  To support this, another 

pseudo-component was developed.  This component, the Region Clutter Sensor, is 

embedded in the arbiter.  It simply provides a fast assessment of the percentage of cells in 

a specified area that are classified as non-traversable.  This message is sent to the reactive 

planner, which has the responsibility for determining how to react to this notification.  

Ideally, the reactive planner converts the clutter percentage to a recommended vehicle 

speed and transmits this to the Global Path Segment Driver component using the JAUS 

Code 040Ah: Set Travel Speed message. 

Table 3-4.  Smart sensor architecture's report traversability grid updates message. 
Field # Name Type Units Interpretation 

1 Latitude 
(WGS 84) Integer Degrees 

Scaled Integer 
Lower Limit = -90 
Upper Limit = 90 

2 Longitude 
(WGS 84) Integer Degrees 

Scaled Integer 
Lower Limit = -180 
Upper Limit =  180 

3 Cell Update 1 
Row Byte N/A  

4 Cell Update 1 
Column Byte N/A  
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Table 3-4.  Continued 
Field # Name Type Units Interpretation 

5 Cell Update 1 
Value Byte N/A 

0 – Reserved for World 
Model 
1 … 126 – Non Traversable 
127 – Unknown 
128 … 255 – Traversable 
 
The grid maps should be 
initialized to 127 (Unknown) 
 
A value of 1 represents 
completely non-traversable 
 
A value of 255 represents 
completely traversable 

… … … … … 
… … … … … 
… … … … … 

3n Cell Update n 
Row Byte N/A  

3n + 1 Cell Update n 
Column Byte N/A  

3n + 2 Cell Update n 
Value Byte N/A Same as field 5 

 
The area covered by the Region Clutter Sensor is not specified in the Smart Sensor 

Architecture Interface Control Document (ICD).  This is a system specific parameter and 

is therefore left to the system implementer.  A system traveling at high speed may need to 

monitor a large area whereas a slower or smaller system may need to monitor a smaller 

area. 

Table 3-5.  Smart sensor architecture's report region clutter index message. 
Field # Name Type Units Interpretation 

1 Clutter 
Index Byte Percent 

Scaled Byte 
Lower Limit = 0  
Upper Limit = 100 
 
Percentage clutter in 

specified area 
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3.3.3 Smart Sensor Architecture Network Communications 

The smart sensor data are transferred within the perception system via the user 

datagram protocol (UDP) running on top of the Internet protocol (IP).  This combination 

of user datagram protocol and the Internet protocol will be referred to as UDP/IP.  

UDP/IP provides a connectionless, unreliable communications link between systems.  

The term unreliable is in some respects a misnomer because UDP/IP can provide a 

quality connection.  Unlike the Transmission Control Protocol, UDP does not have any 

checks to assure receipt of data.  It relies on the host application to do the checking.  For 

example, the JAUS header provides a message acknowledgement flag that requests that 

the receiving component notify the sending component of receipt of a message.  If the 

sending component does not respond in a set period of time, as per the JAUS RA, the 

sending component retries up to three times and then terminates transmission.  If a JAUS 

implementation used UDP/IP, then this functionality would help assure reliable 

communications. 

The smart sensor system is set up a priori under the assumption that the minimum 

number of system components are present and that they are online and in the ready state.  

It was developed such that each component commences transfer of the supported 

messages to the appropriate component directly after initialization.  This may be 

considered transmission of unsolicited responses to repeated data queries (sans the 

queries) or as an unsolicited JAUS service connection.  The UDP/IP transport layer 

supports this functionality. UDP/IP is connectionless and therefore does not require that 

the destination component be present or a link established in order for data to be sent 

within the system.  The popular alternative to UDP/IP, TCP/IP, generally requires that a 

socket connection be established between two or more systems before data can be sent.  
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To route data to the smart sensors, internet protocol (IP) addresses had to be 

defined.  To allow the IP addresses to be determined dynamically based on the 

destination of the message, an IP addressing convention was established.  Since each 

smart sensor has a unique component ID, the component ID was used as the last octet of 

the IP address.  The first three octets of the IP address were established a priori.  For 

example: 192.168.1.component_id is an example configuration where the first three 

octets are the defined and the component ID is used as the last octet.  Table 3-6 presents a 

list of smart sensor components and their associated component identification numbers.  

A standard UDP/IP port was also designated. 

The network interface between all components within the perception system was 

wired Ethernet capable of providing data transfer at rates of up to 100 Megabits per 

second.   

Table 3-6.  Smart sensor components and their component identification numbers 
Smart Sensor Component ID 
Reactive Planner 10 
Smart Sensor Arbiter 11 
Smart 3D Laser Sensor 21 
Smart Stereo Vision Sensor 22 
Smart Terrain Finder Sensor 23 
Smart Road Finder Sensor 24 
Smart World Model Sensor 25 
Region Clutter Sensor 127 

 
3.4 Smart Sensor Implementation 

While the smart sensor architecture was originally developed for the Team CIMAR 

NaviGATOR, final testing and verification took place on the Center for Intelligent 

Machines and Robotics’ Navigation Test Vehicle 2 (NTV2) shown in Figure 3-6.  The 

implementation of the smart sensor units at CIMAR exploited the commonality between 

implementations. 
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3.4.1 Abstraction of Smart Sensor Core Functionality 

Because of the considerable amount of implementation overlap, the CIMAR smart 

sensor system was designed so that all developers build their smart sensors on top of a 

common base implementation that contained the core smart sensor functionality. This 

approach saved a considerable amount of time because testing and debugging of the main 

base sensor implementation occurred independent of development of the sensors.  The 

interface to this system was made into a clean application programmer’s interface (API).   

This API handles communications, grid synchronization, and all other low level 

smart sensor tasks.  The system designer has the responsibility of processing the sensor 

specific data to determine traversability, placing that data in a grid of the proper range 

and resolution, and using the smart sensor API to publish the new data to concerned 

components within the system.  Figure 3-7 shows the high-level conceptual separation 

between the two functions.  The power of this approach is that it allows new 

implementations of sensors to come online in very short order.   

3.4.2 Base Smart Sensor 

The base smart sensor encapsulates all low-level functionality common to all smart 

sensors.  This functionality includes: 

• Allocating memory for a local traversability grid 
• Receiving position and orientation updates via UDP/IP 
• Transforming data from sensor coordinates to grid coordinates 
• Shifting the traversability grid to keep it vehicle centered 
• Monitoring traversability grid updates  
• Synchronizing traversability grid updates via UDP/IP  
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Figure 3-6.  Center for Intelligent Machines and Robotics Navigation Test Vehicle 2. 

 

Figure 3-7.   Smart sensor implementation - abstraction of low-level smart sensor 
functionality 

 
This functionality leaves to the operator the task of solely proving an instantaneous 

local traversability grid from their sensor data.  They initialize their smart sensors using 

the API.  The base smart sensor has two thread that run concurrently with the sensor 

interface specific thread.  Figure 3-8 shows a call graph for all functions within the base 

smart sensor. 
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Figure 3-8.  Call graph for all functions within the base smart sensor API. 

 
The traversability data are registered in the grid by utilizing the platform orientation 

data.  Upon startup, the base smart sensor spawns a thread (Figure 3-9) to handle 

asynchronous position updates from either the smart sensor arbiter or directly from the 

reactive planner component  

 

Figure 3-9.  Call graph for smart sensor communications receive thread 

The rotations Ψ, θ, and φ, as shown in Figure 3-5, as well as the sensor’s offset 

from the vehicle’s coordinate system are used in the homogenous transformation of the 
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data from the sensor’s coordinate system to the grid coordinate system.  Equation 3-1 

shows the compound transformations necessary for this.  The xoffset, yoffset, and zoffset values 

all represent the offset of the sensor coordinate system from the vehicle’s coordinate 

system.  It is assumed that sensor is aligned such that there is no rotational difference 

between the two coordinate systems, only translation.  The xsensor, ysensor, and zsensor values 

represent the coordinates of a point as read from the sensor in the sensor’s coordinate 

system; xvehicle, yvehicle, and zvehicle are the coordinates of the point after transformation to 

the vehicle coordinate system. 
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To synchronize the position of the grid map, the existing cell data are shifted such 

that the vehicle is always located in the center of the raster grid.  The benefit of shifting 

the cell data is that it provides a limited short-term memory of the area directly local to 

the vehicle.   

It is assumed that the position and orientation data are fairly accurate and precise.  

If they are not, proper data registration will not be attained.  Research is currently taking 

place to find ways of handling this problem, but this is outside the scope of this work.  

This is not an issue within this system because all smart sensors use the same position 

and orientation updates.  Therefore any errors introduced due to loss of position system 

precision or accuracy will be present in all of the smart sensors’ data. 

Once the grid has been shifted, the sensor specific data may be entered into the 

traversability grid as if it were a local traversability sensor, i.e. no global position or 

orientation data.  When the smartSensorTransformPoint() function is called, it handles 
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converting the data from sensor coordinates to vehicle coordinates and finally to world 

coordinates.  This transformation is shown in Equation 3-1.  

 

Figure 3-10.  Call graph for function that determines number of rows and columns to shift 
the traversability grid based on the current and previous positions 

Figure 3-11 shows the call graph for the sensorSpecificThread().  This thread 

name is established in the base smart sensor and is common to all smart sensors.  The 

internal implementation of the interface to the sensor within this thread is dependent on 

the sensor modality and is left to the smart sensor implementer. 

 

Figure 3-11.  Call graph for sensor specific interface thread. 

Once updates have been made to the base smart sensor-based traversability grid, 

the main thread causes the grid to be checked for changes.  These changes are transmitted 

via the smartSensorSendCellUpdates() function, as shown in Figure 3-12, and its 

access to the UDP/IP transport layer. 

The next section details the implementation of a stereo vision based smart sensor.  

While the method described in this section is specific to the stereo vision system, the 
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power of the smart sensor approach is that this sensor specific interface is abstracted out.  

This means that as long as a sensor implementer uses the same grid parameters, 

interfacing to the base smart sensor will be trivial.   

 

Figure 3-12. Call graph for function used to detect changes in the traversability grid and 
transmit these changes to the smart sensor arbiter 

3.5 Smart Stereo Vision Sensor Implementation 

Like all CIMAR smart sensors, the smart stereo vision sensor builds on the base 

smart sensor module.  It is based on the Videre Design STH-MD1-C stereo vision camera 

system and the SRI Small Vision System. 

3.5.1 Stereo vision Hardware 

The Videre Design STH-MD1-C, shown in Figure 3-13, is a high resolution, wide 

baseline stereo vision camera system.  It consists of two CMOS imagers and an IEE1394 

(Firewire) interface for transferring the digital images to the computer doing the stereo 

processing. 

3.5.2 Stereo Vision Software 

To handle the tasks of camera calibration, image rectification, and stereo 

correlation, the SRI Small Vision System (SVS) is used.  SVS provides an application 

programmer’s interface to its internal implementation of the functions necessary for 

stereo processing [35].  This system is available for both Linux and Windows based 

systems.  Figure 3-14 shows a rectified stereo image pair from the Videre system.  The 

output of SVS’s processing is shown below the stereo pair.  In this image brighter pixels 
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correspond to smaller distances.  Conversely, darker pixels correspond to larger distances 

as calculated by stereo correlation. 

 

Figure 3-13:  Videre Design STH-MD1-C stereo camera head (left) 

3.5.3 Smart Stereo Vision Sensor 

The base smart sensor handles all of the low level functionality of the smart sensor.  

Because of this, the smart stereo vision sensor has to only provide an instantaneous 

indication of the region traversability within the area local to the vehicle.  To handle the 

tasks of camera calibration, image rectification, and stereo correlation, the SRI small 

vision system (SVS) is used. 

A check of the range resolution was done at the range specified by the Team 

CIMAR perception team.  The following equation relates the range resolution to the 

camera parameters as: 
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where ∆r is the resolution at range r, b is the baseline of the stereo vision camera system, 

f is the focal length of the camera lenses, and d is the smallest disparity perceivable by the 

stereo vision system.  For this sensor system’s STH-MD1, the baseline was 200 

millimeters, the focal length was 12.5 millimeters, and the smallest disparity perceivable 

was 0.46875e-3 millimeters.  A graph of range versus range resolution is shown in Figure 

3-16 [35].  As can be seen in the figure, at a range of the 30 meters, the range resolution 

is approximately 17 mm – not a problem at all considering that the grid resolution is 

constant at 0.5 meters per cell. 

 

A B

C  

Figure 3-14: Source data and results from stereo correlation.  A) Left image.  B) Right 
image.  C) Disparity image. 

 



54 

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Range to Object as Measured with Rule [m]

R
an

ge
 to

 O
bj

ec
t a

s 
M

ea
su

re
d 

w
ith

 S
te

re
o 

V
is

io
n 

S
ys

te
m

s 
[m

]

 
Figure 3-15.  Graph of range determined from stereo vision system vs. actual measured 

range 

Region traversability value judgment is based on an assessment of the three 

dimensional data provided by the stereo vision system.  A method for fast obstacle 

classification based on allowable slope is presented in [15].  This is shown in Equation 

3-3. 

 
( )

( ) ( ) ( )
( )

z z

x x y y z z

k g

k g k g k g

−

− + − + −
≥2 2 2

2sin α  (3-3) 

In this equation (xg, yg, and zg) represent the coordinates of a known ground point and (xk, 

yk, and zk) represent the coordinates of sensed point in space.  The maximum allowable 

angle is represented by α.  This method analyses each point within the sensor data to 

determine whether or not it represents a traversable region. 
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Figure 3-16.  Plot of range resolution vs. range for the Videre Design STH-MD1-C with 

12.5mm focal length lenses 

In this work Hong et al. [15] also show that it is possible for an object to fail this 

test, but still be an obstacle because of the object’s height.  The following test, Equation 

3-4, checks for this condition, by considering the height of the object above the ground 

plane.  If an object is too tall for the vehicle to drive over, then it is classified as an 

obstacle.  The constant H in Equation 3-4 sets this threshold. 

 z z Hk g− <  (3-4) 

Because the smart stereo vision system is based on accumulated instantaneous 

sensor readings, the ground point used in (3.3) is the origin of the vehicle projected onto 

the plane defined by the intersection of the vehicle’s tires and the ground plane.  By 

establishing this point as the origin of the vehicle’s coordinate system, the terms xg, yg, 

and zg drop out of the equation.  Therefore for the instantaneous sensor reading, the 

obstacle check is based on Equation 3-5. 
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The base smart sensor API is used to perform the conversion from three-

dimensional world coordinates to two dimensional grid coordinates.  Because the base 

smart sensor has access to the current position and orientation of the vehicle, the offsets 

of the vehicle and sensor coordinate systems, and the range and resolution of the 

traversability grid, it is able to provide the smart stereo vision system a transformation 

from world coordinates directly to grid coordinates. 

To update data within the local traversability grid, a method for updating the 

traversability grid was established based on the work by [20].  This implementation of a 

local occupancy grid uses a simpler approach for grid updating.  They based their 

updated method on the observation that stereo errors are systemic and are not easily 

modeled probabilistically.  This is because stereo vision systems are dependent of the 

visual properties of the environment.  For example, as lighting and texture conditions 

change, the performance of the stereo matching process may improve or degrade.  

Because of this a probabilistic model of the stereo vision system may not be the same as 

under ideal conditions.  Similar to the grid cell properties established in Section 3.3.2.2, 

Murray and Little’s [20] method uses a one byte per cell representation with an unknown 

state represented by the value 127.   

 IF i ∈ TRAVERS(r) THEN G(i) = G(i)+Kt ELSE G(i) = G(i)-Knt (3-6) 

An extension of their work was developed for use in the smart stereovision system 

traversability grid.  This is method updates cells based on Equation 3-6.  As in Murray 

and Little’s implementation, i represents a location within the grid –in this case the 

traversability grid, r is a reading from the stereo vision sensor, TRAVERS() is the 
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operator that determines if the sensor reading represents a traversable point, G(i) is the 

traversability grid value at location i, Kt and Knt are constants used to, respectively, 

increment and decrement the traversability cell value.  The addition of Kt and Knt is a 

departure from Murry and Little’s approach where a single constant is used.  By having 

separate constants, emphasis can be placed on either maintaining clean data with slower 

response times for detecting obstacles or vise versa.  To bias one approach over the other, 

the associated incrementing constant is made larger than the other.  Otherwise the 

constants should be equal. 

3.6 Use of Obstacle Detection and Free Space Sensors 

As mentioned previously, the purpose of the Smart Sensor Architecture is to 

generate a model of the world local to the vehicle to support the task of obstacle 

avoidance.  Since all sensor modalities do not provide high-resolution data within their 

fields of view, an important distinction is made between different types of sensors.  They 

are classified as free space detectors, obstacle detectors, or a combination of both.   

While highly accurate with respect to presence within a zone, the issue is that when 

trying to use this for obstacle detection, the entire zone would have to be classified as an 

obstacle because of the lack of granularity in the sensor field.  Rather than considering 

the radar unit an obstacle detector, it is viewed as a free space detector.  If the radar unit 

indicates that there is no object in a particular zone, it can be assumed that the entire zone 

is clear.  It follows that if the radar until indicates that all zones are clear then there is a 

fast, computationally inexpensive method of classifying the entire sensor field of view as 

clear and traversable.  The associated cells are updated to correspond to this 

classification. Sensors with high resolution such as the stereo vision system or the 
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LADAR sensor presented in chapter two can be used to detect free space as well as 

objects. 

3.7 Smart Sensor Arbiter Implementation 

The smart sensor arbiter also builds on the base smart sensor module.  The initial 

implementation of the arbiter is minimalist.  Because position and orientation updates 

from the JAUS network are sent through the smart sensor arbiter down to all of the smart 

sensor components, the arbiter knows its current position.  As grid cell updates come in 

from the smart sensors, each message has a latitude and longitude position stamp 

indicating the origin of the cell updates.  Using the Universal Transverse Mercator 

projection, the latitude and longitude based coordinate values are converted to Cartesian 

coordinates within a UTM zone.  The arbiter then does the same conversion using the 

coordinates of the vehicle’s current location.  The difference in the vehicle position and 

the origin of the grid cell updates is converted to an offset of grid coordinates (rows and 

columns).  This offset is simply applied to each grid cell update. 

This approach is acceptable in this situation because, while they are distributed 

systems, all smart sensors use position data from single position system.  If each smart 

sensor were on a different subsystem with independent position systems, then this 

approach would have to be modified because of accuracy and precision issues. 

As the data within the smart sensors’ grids change, they transmit corresponding 

traversability grid updates.  To fuse the data from the smart sensors, the arbiter uses the 

method shown in Equation 3-7. 

  (3-7) G i w cell update row row offset col col offsetn i i
n

num smart sensors

( ) _ ( _ , _
_ _

= ⋅ − −
=
∑

1
n)
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where G(i) is the value of the fused traversability grid cell at the grid position i.  The 

constant wn represents a weight associated with data from smart sensor n.  

Consider the case of a smart sensor system consisting of stereo vision based smart 

sensor and a RADAR based smart sensor.  If the RADAR is considered a free space 

detector and is limited to that traversable range for cell updates, then when the RADAR 

unit classifies a pixel as free, it is highly probable that the RADAR’s data would always 

be more accurate than the stereo vision system, which is subject to the systemic errors 

discussed by [20].  Therefore weighing the RADAR data more than the stereo data would 

put more emphasis on the high quality RADAR data.  This is only true when the RADAR 

is used as a free space detector.  If the RADAR were used as an obstacle detector, then it 

would adversely affect the quality of the fused data from the stereovision system.   

The Region Clutter Sensor is a quasi-component embedded in the smart sensor 

arbiter.  This component simply applies a non-traversable region threshold to the values 

within a region of the traversability grid.  As the saturation of non-traversable regions 

increases, the vehicle makes the appropriate changes in velocity necessary to allow 

successful negotiation of area.  This component is only present in the arbiter, so when a 

smart sensor replaces the arbiter, this functionality is lost. 

 



CHAPTER 4 
JAUS WORLD MODEL KNOWLEDGE STORES 

The previous chapter presented a detailed description of the smart sensor 

architecture and the implementation of a stereovision based smart sensor unit.  The smart 

sensor architecture message set defines a standard logical interface that allows data to be 

shared between the components of a perception system.  While this interface is 

acceptable to meet the synchronization requirements of the smart sensor architecture’s 

traversability grids, it is not general enough to support the sharing of data based on the 

raster and vector modeling methods presented in Chapter 2.  Building on the reviewed 

literature as well as on lessons learned from developing the smart sensor architecture, this 

chapter introduces standard modeling and input/output methods for world model 

knowledge stores. 

A world model knowledge store is to be the central geospatial data store for a 

JAUS component, node, subsystem, or system.  The knowledge store provides only 

geospatial data storage and access methods.  Therefore, no processing or higher level 

functionality should be provided by the knowledge store.  It is the most primitive world 

modeling component and forms the foundation for all future world model components.  

These future components will extend the world modeling capabilities of JAUS by 

providing functions such as value judgment, simulation, prediction, etc. as described by 

Mystel [18]. 

60 
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Similar to the smart sensors in Chapter 3, the world model knowledge stores are 

envisioned as location independent, modular JAUS components.  Because of this, it is 

possible to have multiple subsystems accumulating data in a global world model 

knowledge store or to have individual subsystems accumulate data in their own world 

model knowledge stores and then have synchronization of those stores.  The data within 

these stores may be either persistent or volatile.  This will not be specified as it is an 

implementation issue.   

4.1 Observations and Recommendations 

Chapter 2 showed that there is a considerable amount of commonality between the 

numerous types of data that are available in a priori data stores and the types of data that 

may be accumulated in real-time.  The main two classes of data types are raster and 

vector data.  Raster data may consist of elevation, geo-referenced orthoimages, density 

maps, occupancy grids, traversability grids, etc.  Vector data may consist of digital road 

maps, polygon maps, etc.  By enforcing some constraints, it is possible to distill these 

data into a common format that may be used by unmanned systems community. 

From the preceding chapters, a number of key observations were made about the 

current methods for accessing and sharing real time and a priori geospatial data.  These 

are that: 

• The level of complexity of modeling methods designed for a priori data-sharing 
(such as SDTS and GML) is well beyond what is necessary for JAUS based 
unmanned systems. 

• There are a number of different projections that may be used to transform data from 
geodetic coordinates to a two or two and a half dimensional surface.   

• Current world modeling methods are, at their core, based on either raster or vector 
primitives. 
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• For real-time world modeling on unmanned vehicles, raster methods are used most 
often. 

• Both vector and raster modeling methods are commonly used in a priori data 
stores. 

• Most a priori data stores include metadata which have extra information about the 
stored data. 

Therefore it is recommended that at a minimum the initial JAUS World Model 

standard should:  

• Provide the ability for JAUS based subsystems, nodes, and/or components to share 
geospatial data with minimal complexity. 

• Allow developers some degree of flexibility within the constraints of the standard. 

• Specify a map projection and horizontal and vertical datums to be used within the 
knowledge stores. 

• Allow for use and transfer of a priori and real-time raster and vector data. 

• Provide a mechanism to allow distinguishing between different types of geospatial 
data. 

• Provide a means for saving and sharing information about the geospatial data 
within the knowledge store. 

• Meet the standard JAUS requirements for definition of new components. 

 
A JAUS World Model Knowledge Store standard should not be concerned with the 

method of modeling data internal to the system, but with how the data are formatted and 

presented to other JAUS components that use or store geospatial data.  The work done on 

the smart sensor architecture as well as past experiments with JAUS interoperability has 

shown that as component interfaces become more complex, it becomes increasingly 

difficult to achieve true interoperability.  The approach with the message set presented 

herein is to develop a method of sharing the data at the most primitive levels.  

Complexity has been limited so as to provide to the many organizations that make up the 
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JAUS Working Group a more acceptable and undemanding initial standard.  As the 

geospatial data-sharing requirements of the group change, so too will the standard. 

Standards inherently impose limitations and this must be accepted.  However, 

standards that are too restrictive run the risk of losing of support.  Therefore the JAUS 

World Model Knowledge Store standard is developed to be as flexible as reasonably 

possible.  The messages are also designed to be as extensible as is possible within the 

JAUS framework.  This standard and all future world modeling component standards 

should be considered living documents that are able to quickly change to meet the needs 

of system developers.  The JAUS working group’s review process will assure that the 

changes that are made are only those that are applicable to the group as a whole. 

Geospatial data transferred from different systems must use the same map 

projections, ellipsoidal Earth model, and horizontal and vertical datum.  For the global 

coordinates, JAUS specifies that all systems use the World Geodetic System 1984 

(WGS84).  The map projection will be the Universal Transverse Mercator Projection.  

Vertical measurements will be based on the vertical datum as established by the 

ellipsoidal model of the Earth.  Since most of the systems will be operating in the United 

States, the horizontal with be the North American Datum as established in 1983 

(NAD83). 

 Chapter 2 showed that real-time world modeling methods typically use tessellated 

raster data structures and a priori world modeling methods use ether raster or vector data 

structures.  Therefore a message set has been developed to support two types of 

knowledge stores: the World Model Raster Knowledge Store and the World Model 

Vector Knowledge Store. 
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The World Model Raster Knowledge Store provides a method for storage and 

sharing of raster formatted geospatial data within a JAUS system.  Many unmanned 

systems with perception systems utilize a form of the local occupancy grid as introduced 

by Elfes [13].  The local occupancy grid is implemented as a tessellated geo-referenced 

grid.  The World Model Raster Knowledge Store is a generalization of such a local 

occupancy grid.  It is desired to have this knowledge store support most types of raster 

data.  These include binary image, grey scale images, RGB images, digital elevation 

model (DEM) data, traversability, occupancy, etc. Typically an occupancy grid stores a 

value corresponding to a truth metric in each cell.  When raster data are stored such that 

each cell represents a height at that location (such as DEM data), this is referred to as two 

and a half (2.5) dimensions [21]. 

Storage and sharing of spatial data such as points, lines, polylines, or polygons is 

supported by the World Model Vector Knowledge Store.  These vector formatted spatial 

data provides a number of benefits.  The primary benefit of such a system in the context 

of JAUS is that it requires significantly less bandwidth to transmit data as compared to 

the raster store.  This method therefore can reduce the storage requirements within the 

system. 

A feature class represents a categorization of types of spatial data.  For example, 

occupancy, free space, objects, roads, terrain, building, etc. all represent distinct feature 

classes.  A geo-referenced, orthoimage may also represent a feature class.  It may be 

more intuitive to consider these feature classes as different layers of geospatial data 

within the knowledge store.  This is important because it allows different types of spatial 

data to be handled separately.  Predefined feature classes will eventually be defined by 
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the JAUS World Model Subcommittee in the interest of true world model 

interoperability.  Since it is not possible to define all types of feature classes a priori, a 

sizeable amount of space has been set aside for user defined feature classes.  While this 

does have an adverse effect on interoperability, this is mitigated by having system 

developers provide each other with a data dictionary when they wish to interoperate.  The 

data dictionary is simple a description of which types of data correspond to a feature class 

identifier.  Even with the predefined feature classes, when testing interoperability system 

developers must establish the data types that they are using within the knowledge store.  

It is possible that this exchange could be handled during the discovery process provided 

in the forthcoming JAUS dynamic configuration and registration extensions 

To allow dissemination of information about a feature class, the world model 

framework provides for storage and transfer of feature class metadata.  In this context, 

metadata is simply text that provides general information about the data within a 

particular feature class.  Initially the metadata are developed to be human readable text in 

a format specified by the user.  Bolstad [7] gives an introduction to metadata and 

discusses the Content Standard for Digital Geospatial Metadata.  Just as this is considered 

only a guideline for the GIS community, it is considered only a guideline for the JAUS 

community.  Initially these metadata are designed to be human readable and not used in 

any distributed computations that may be performed on these data. 

The local request identifier (LRID) is a single-byte numerical identifier attached to 

certain classes of messages originating outside of the world model knowledge store.  This 

feature allows synchronization of messages and their associated response.  This is 

important because even though requests to the knowledge store may be synchronized, 
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there is no guarantee that the responses will be synchronized.  By attaching the LRID, the 

requesting component will be able to internally synchronize any asynchronous responses.  

 
4.1.1 Raster and Vector Object Representation 

This section describes the raster and vector objects as they should be formatted in 

the JAUS messages that define the input and outputs of the knowledge stores.  Special 

attention must be made to assure that these conventions are followed by all components 

sending data to or receiving data from the world model knowledge stores. 

The data within a raster knowledge store should always maintain a north-east 

orientation.  Raster data in the knowledge store should be geo-referenced by defining 

their origin as a single point described by the intersection of a line of latitude and a line of 

longitude (WGS84).  The grid parameters also include the number of rows and columns 

and the grid resolution.  While a grid cell is specified as a point, that point covers an area 

equal to the grid resolution squared.  A Cartesian coordinate system is established at the 

geo-referenced point.  The Cartesian coordinates of the grid cells are derived from use of 

the Universal Transverse Mercator projection.  The grid cells may also be referenced by 

their row and column offset from the origin point.  Figure 4-1 shows the format of a layer 

of raster data.  While cells may have negative row and column values with respect to the 

grid origin, when transmitting rectangular grid data (e.g. images, DTED), the origin of 

the raster data must be the point that defines the cell whose column coordinate is equal to 

the column coordinate of the western most cells and whose row coordinate is equal to the 

row coordinate of the southern most cells.  Therefore when transmitting a rectangular 

array of raster data, there will be no cell values with coordinates less than zero. 
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Figure 4-1.  Definition of raster grid parameters and coordinate system 

For the vector knowledge store, objects are represented as points, lines and 

polylines, and polygons.  The coordinates of these points are defined by a point of 

latitude and longitude (WGS84).  Polylines and polygons may consist of up to 65535 

vertices.  Figure 4-2 shows the format of these vector objects.  Rather than assigning 

these points Cartesian coordinates with respect to an arbitrarily chose datum, each vertex 

is expressed as a point of latitude and longitude.   

The vector objects on the right of Figure 4-2 have a buffer parameter.  The buffer 

parameter establishes a radial region around each vector object vertex and connects the 

radial regions of two or more radial regions by drawing lines at their tangents.  The area 

within these radial regions and tangent lines are considered to be within the vector 
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object’s buffer zone.  This feature allows a region to be established in proximity to the 

vector objects.  For example, United States Geological Survey (USGS) road data is 

presented in vector form representing the center-line of such roads.  It may be useful to 

do a search within the perimeter along a particular route defined in the USGS digital line 

graph data.  For simple cases, it may be possible to generate a polygonal representation of 

the area around the road.  Establishing this polygon will require transmitting the 

coordinates of each of its vertices.  As the problem scales up, this method becomes very 

inefficient.  A better solution to this problem would be to determine the route using the 

USGS digital line graph data and assign a region buffer to each line segment.  The region 

buffer is defined as an offset distance in meters.  The spatial buffer is established by 

defining a radius from each point on the vector object.   For many cases, this buffer will 

be a simple offset with the exception of point objects and along non-smooth contours.  

Figure 4-2 shows these cases.  If the system designer requires finer control over this 

region, they may define the buffer using the aforementioned polygonal representation. 

4.2 World Model Knowledge Store Message Set 

The following sections present the initial draft message set for the first two JAUS 

World Modeling components.  This message set is based on a review of the current 

methods of modeling spatial and geospatial data as presented in Chapter 2.  These 

methods are distilled into their most basic form and codified into a standard consistent 

with the JAUS framework.   
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Figure 4-2.  Definition of vector objects and parameters 
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4.2.1 JAUS Core Input and Output Message Sets 

Support for the JAUS core message set is required by the current version of the 

JAUS Reference Architecture (RA).  The JAUS Core Message Set consists of the 

following messages: 

• Code 0001h: Set component authority 
• Code 0002h: Shutdown 
• Code 0003h: Standby 
• Code 0004h: Resume 
• Code 0005h: Reset 
• Code 0006h: Set emergency 
• Code 0007h: Clear emergency 
• Code 0008h: Create service connection 
• Code 0009h: Confirm service connection 
• Code 000Ah: Activate service connection 
• Code 000Bh: Suspend service connection 
• Code 000Ch: Terminate service connection 

 
While the JAUS RA does require that these messages be accepted by all 

components, there is no requirement that components have an action associated with each 

input message.  Because the expected behavior of components while in each state is 

somewhat ambiguous, they will be defined for the world model knowledge stores.  So too 

will the message that are required to have a response.   

The world model knowledge stores should have an appropriate response to the 

following messages: 

• Code 0002h: Shutdown 
• Code 0003h: Standby 
• Code 0004h: Resume 
• Code 0005h: Reset 
• Code 0009h: Confirm service connection 
• Code 000Ah: Activate service connection 
• Code 000Bh: Suspend service connection 
• Code 000Ch: Terminate service connection 
• Code 2002h: Query component status 
• Code 4002h: Report component status 
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The Code 0002h: Shutdown message should cause the receiving knowledge store to 

immediately terminate all data transfer upon receipt.  If the knowledge store is 

responding to a query, it should immediately terminate the flow of data and transmit the 

Code F405h: Report Raster Knowledge Store Data Transfer Termination or the Code 

F424h: Report Vector Knowledge Store Data Transfer Termination message to the 

component whose query response was interrupted and any components with outstanding 

requests.  Upon termination of all data transfer, the world model should execute its 

specific shutdown routine and then halt.  It should no longer respond to any data requests 

and should require a hard reset in order to resume operation. 

The Code 0003h: Standby message should cause the receiving knowledge store to 

respond as if it had received the Code 0002h: Shutdown message.  The exception is that 

the knowledge store should not halt.  It should respond only to the Code 0004h: Resume 

and Code 0005: Reset messages.  Upon resumption to the ready state, the knowledge 

store should resume normal operations.  It should not resume any suspended query 

responses. 

The Code 0005h:  Reset message should cause the receiving knowledge store to 

immediately terminate the transfer and processing of any data.  The knowledge store 

should transmit to all components with outstanding requests or data transfers the Code 

F405h: Report Raster Knowledge Store Data Transfer Termination or the Code F424h: 

Report Vector Knowledge Store Data Transfer Termination message.  The knowledge 

store should them immediately restart and return to the ready state.  Terminated data 

transfers should not resume. 
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The Codes 0009h: Confirm Service Connection, 000Ah: Activate Service 

Connection, 000Bh: Suspend Service Connection, 000Ch: Terminate Service Connection, 

2002h: Query Component Status and 4002h: Report Component Status messages should 

all invoke that typical JAUS response associated with their receipt. 

4.2.2 Raster Knowledge Store Input Message Set 

In the following subsections are the messages that define the input to the raster 

version of the world model knowledge store.  These command, query, and event setup 

class messages are transmitted in order to initiate an appropriate inform or event 

notification class message output.  These outputs messages are defined in Section 4.2.3. 

The inputs to the raster knowledge store are: 

• The JAUS core input message set 
• Code F000h: Create raster knowledge store object 
• Code F001h: Set raster knowledge store feature class metadata  
• Code F002h: Modify raster knowledge store object (cell update) 
• Code F003h: Modify raster knowledge store object (grid update) 
• Code F004h: Delete raster knowledge store objects 
• Code F200h: Query raster knowledge store objects 
• Code F201h: Query raster knowledge store feature class metadata 
• Code F202h: Query raster knowledge store bounds 
• Code F600h: Raster knowledge store event notification request 
• Code F601h: Raster knowledge store bounds change event notification request 
• Code F005h: Terminate raster knowledge store data transfer 
 
4.2.2.1 Code F000h: Create raster knowledge store object 

The Code F000h: Create Raster Knowledge Store Object message (Table 4-1) is 

used to create and initialize a layer of feature class data within the raster knowledge store.  

In order for data to be added to the feature class, the feature class layer must first be 

created. 

The origin of the raster grid must be geo-referenced by specifying its origin in 

fields 4 and 5 as a point of latitude and longitude.  Extents of the layer must also be 
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specified as a number of rows and columns in fields 7 and 8.  Both the data types that 

describe the number of rows and columns and the cell attribute type are variable and must 

also be specified in fields 6 and 11, respectively.  The grid cell resolution is also specified 

in field 9.  Because this message is used to create a feature class layer, the feature class 

must be specified using field 10. 

This message has a single optional field (field 11).  Inclusion of this optional field 

is determined from the state of bit zero in the message presence vector (Table 4-2).  If the 

bit zero is set, then the value in field 12 shall be used to initialize all cells within the 

feature class. 

When the feature class layer is initialized using this message, the data are filled in 

the grid on a row by row basis starting at the southern most row and moving north.  It is 

filled beginning at the southwestern most point moving east. 

Table 4-1.  Create raster knowledge store objects message format 
Field # Name Type Units Interpretation 
1 Message 

Properties 
Byte N/A Bit Field 

0: Request confirmation of  
    object creation 
1 – 7: Reserved 

2 Message 
Properties 

Byte N/A Bit Field 
0: Request confirmation of          
     object creation 

3 Local 
Request ID 

Byte N/A Request identifier to be used 
when returning confirmation to 
requesting component 

4 Origin 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

5 Origin 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
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Table 4-1.  Continued 
Field # Name Type Units Interpretation 
6 Raster Data 

Row and 
Column 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Reserved 
2: Reserved 
3: Reserved 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7 – 255: Reserved 

7 Raster Grid 
Update 
Rows 

Varies (See 
field 4) 

Grid Cells  

8 Raster Grid 
Update 
Columns 

Varies (See 
field 4) 

Grid Cells  

9 Cell 
Resolution 

Float Meters  

10 Feature 
Class 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 - Reserved 

11 Raster Cell 
Data Type 

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
9: RGB (3 Bytes) 
10 – 255: Reserved 
 

12 Initial Value 
for Raster 
Grid Cells 

Varies (see 
field 11) 

N/A  

 
Table 4-2.  Presence vector for create raster knowledge store objects message 

Vector to Data Field Mapping for Above Command 
Vector Bit 7 6 5 4 3 2 1 0 
Data Field R R R R R R R 12 
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4.2.2.2 Code F001h: Set raster knowledge store feature class metadata  

As described in Section 4.1, metadata are data about data.  The Code F001h: Set 

Raster Knowledge Store Feature Class Metadata (Table 4-3) message allows a user to 

create, modify, and erase feature class metadata.  At the present time the format of these 

metadata is not specified.  It is left to the system designer to develop a convention for 

doing this.  Initially these data are to be used by the human operators.  In the future a 

schema may be defined so as to provide a standard metadata format that may be parsed 

and the data used by unmanned systems without human intervention. 

Table 4-3.  Set raster knowledge store feature class metadata message format 
Field # Name Type Units Interpretation 
1 Metadata 

Options 
Byte N/A Enumeration 

0: Append 
1: Prepend 
2: Overwrite 
3 – 254: Reserved 
255: Erase All 

2 Feature 
Class 

Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 – Reserved 

3 Number of 
String 
Characters 

Unsigned 
Short 
Integer 

N/A 0 … 65,535 
 
This field should be equal to 
zero only when Field 1 is equal 
to 255 (Erase All) 

4 Metadata String N/A Variable length string 
 
4.2.2.3 Code F002h: Modify raster knowledge store object (cell update) 

The Code F002h: Modify Raster Knowledge Store Object (Cell Update) message 

(Table 4-4) is used to change data within a raster knowledge store feature class layer.  

This message can only be used on a layer that has been created within the raster 

knowledge store.  This method is specified as a cell update version because it allows 
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modification of the raster grid on a cell by cell basis.  This message has no optional 

fields. 

The origin of the raster grid cell updates must be geo-referenced by specifying its 

origin in fields 2 and 3 as a point of latitude and longitude.  Both the data types that 

describe the update row and column and cell attribute are variable and must also be 

specified in fields 4 and 7, respectively.  The grid cell update resolution is also specified 

in field 5.  Because this message is used to modify a feature class layer, the feature class 

must be specified using field 6.  The data type for the field that specifies the number of 

cell updates included in the message (field 9) is also variable and is defined in field 8.  

Each cell update is a three-tuple representing the cell update’s row, column, and update 

attribute value. 

Table 4-4.  Modify raster knowledge store object (cell update) message format 
Field # Name Type Units Interpretation 
1 Local 

Request ID 
Byte N/A Request identifier to be used 

when returning confirmation to 
requesting component 

2 Origin 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

3 Origin 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

4 Raster Data 
Row and 
Column 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7 – 255: Reserved 

5 Cell 
Resolution 

Float Meters  
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Table 4-4.  Continued 
Field # Name Type Units Interpretation 
6 Feature 

Class 
Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature 
Class Table 
65,535 - Reserved 

7 Raster Cell 
Data Type 

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
19: RGB (3 Bytes) 
10 – 255: Reserved 
 

8 Data Type 
for Number 
of Cell 
Updates  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7 – 255: Reserved 

9 Number of 
Cell 
Updates  

Varies (see 
field 8) 

N/A  

10 Raster Cell 
Update  1 
Row  

Varies (see 
field 4) 

N/A  

11 Raster Cell 
Update 1 
Col 

Varies (see 
field 4) 

N/A  

12 Raster Cell 
Update 1 
Data 

Varies (see 
field 7) 

Varies with 
Feature 
Class 

 

…     
…     
…     
3n + 7 Raster Cell 

Update n 
Row  

Varies (see 
field 4) 

N/A  
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Table 4-4.  Continued 
Field # Name Type Units Interpretation 
3n + 8 Raster Cell 

Update n 
Col 

Varies (see 
field 4) 

N/A  

3n + 9 Raster Cell 
Update n 
Data 

Variable 
(see field 
7) 

Varies with 
Feature 
Class 

 

 
4.2.2.4 Code F003h: Modify raster knowledge store object (grid update) 

The Code F003h: Modify Raster Knowledge Store Object (Grid Update) message 

(Table 4-5) is similar to the Code F002h: Modify Raster Knowledge Store Object (Cell 

Update) message in that it permits change of grid cell values.  It differs from that method 

in that rather than transmitting single cell updates, an entire rectangular patch of cells is 

updated.  As the number of cells that need to be modified increases, this method becomes 

more efficient than the cell update method.   

The origin of the raster grid update must be geo-referenced by specifying its origin 

in fields 2 and 3 as a point of latitude and longitude.  Both the data types that describe the 

update row and column and cell attribute are variable and must also be specified in fields 

4 and 9, respectively.  Fields 5 and 6 specify the number of rows and columns of raster 

grid updates being transmitted.  The grid cell update resolution is also specified in field 7.  

Because this message is used to modify a feature class layer, the feature class must be 

specified in field 8.   

Table 4-5.  Modify raster knowledge store object (grid update) message format 
Field # Name Type Units Interpretation 
1 Local 

Request ID 
Byte N/A Request identifier to be used 

when returning confirmation to 
requesting component 

2 Origin 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
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Table 4-5.  Continued 
Field # Name Type Units Interpretation 
3 Origin 

Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

4 Raster Data 
Row and 
Column 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Reserved 
2: Reserved 
3: Reserved 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7 – 255: Reserved 

5 Raster Grid 
Update 
Rows 

Varies (See 
field 4) 

Grid Cells  

6 Raster Grid 
Update 
Columns 

Varies (See 
field 4) 

Grid Cells  

7 Cell 
Resolution 

Float Meters  

8 Feature 
Class 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 - Reserved 

9 Raster Cell 
Data Type 

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
19: RGB (3 Bytes) 
10 – 255: Reserved 

10 Raster Cell 
Update 1 

Varies (see 
field 9) 

N/A  

11 Raster Cell 
Update 2 

Varies (see 
field 9) 

N/A  

…     
9 + n Raster Cell 

Update n 
Varies (see 
field 9) 

N/A  
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Table 4-5.  Continued 
Field # Name Type Units Interpretation 
10 + n Raster Cell 

n+1 
Varies (see 
field 9) 

N/A  

 
4.2.2.5 Code F004h: Delete raster knowledge store objects 

The Code F004h: Delete Raster Knowledge Store Object message (Table 4-6) is 

used to free all resources allocated to a feature class layer within the raster knowledge 

store.  In order to resume accumulation of data within the deleted feature class, the 

feature class layer must be recreated using the Create Raster Knowledge Store Object 

message.  The message allows a single feature class or all feature classes to be deleted in 

one message. 

Table 4-6.  Delete raster knowledge store objects message format 
Field # Name Type Units Interpretation 
1 Presence 

Vector 
Byte N/A See mapping table below 

2 Local 
Request ID 

Byte N/A Request identifier to be used 
when returning confirmation to 
requesting component 

3 Number of 
Feature 
Classes 

Byte N/A  

4 Feature 
Class 1 

Short 
Integer 

N/A Enumeration 
0 … 65,534 – See Feature    
                       Class Table 
65,535 – ALL 

… … … … … 
3 + n Feature 

Class n 
Short 
Integer 

N/A Enumeration 
0 … 65,534 – See Feature  
                       Class Table 
65,535: Reserved 

 
4.2.2.6 Code F200h: Query raster knowledge store objects 

The Code F200h: Query Raster Knowledge Store Objects message (Table 4-7) 

provides access to data within the raster knowledge store.  Field 1 of this message is the 

message presence vector (Table 4-8).  The optional fields in this message are fields 4, 5, 
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and 6.  Field 2 is the Query Response Properties bit field.  When bit zero is clear, the 

response to the query should only include the number of records that would be returned.  

When bit one is set, the query response shall be the Code F402h: Report Raster 

Knowledge Store Objects (Cell Update) message.  Otherwise, the Code F403h: Report 

Raster Knowledge Store Objects (Grid Update) message shall be sent.  Field 3 is the 

message Local Request Identifier.  This field allows synchronization of message 

responses.  Field 4 is the Raster Query Resolution.  This field allows the querying 

component to specify the cell resolution to be used in the response to the query.  If this 

resolution does not match the native resolution of the queried knowledge store, then the 

knowledge store should either sub-sample or interpolate the data to obtain the desired 

resolution.  This field is optional.  Field 5 specifies a specific feature class to be queried.  

This field is optional.  If a feature class is not specified, then the query should be done on 

all feature classes within the knowledge store.  Fields 6 through 9 specify two points of 

latitude and longitude that limit the range of the query.  These fields are optional.  If 

presence vector bit two is set, then fields 6 through 9 shall all be included.  Otherwise, 

they should not. 

Table 4-7.  Query raster knowledge store objects message format 
Field # Name Type Units Interpretation 
1 Presence 

Vector 
Unsigned 
Short Integer 

N/A See mapping table below 

2 Query 
Response 
Properties 

Byte N/A Bit Field 
0: Only return number of  
    responses that would be     
    transmitted   
1: Return cell update 3 tuples  
    or raster scan (active low) 
2 – 7: Reserved 

3 Local 
Request ID 

Byte N/A Request identifier to be used 
when returning data to 
requesting component 
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Table 4-7.  Continued 
Field # Name Type Units Interpretation 
4 Raster 

Query 
Resolution 

Float Meters  

5 Feature 
Class 

Unsigned 
Short Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 – All Feature Classes 

6 Query 
Region 
Point 1 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

7 Query 
Region 
Point 1 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

8 Query 
Region 
Point 2 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

9 Query 
Region 
Point 2 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

 
Table 4-8.  Presence vector for query raster knowledge store objects message 

Vector to Data Field Mapping for Above Command 
Vector Bit 7 6 5 4 3 2 1 0 
Data Field R R R R R 6 5 4 

 
4.2.2.7 Code F201h: Query raster knowledge store feature class metadata 

The Code F201h: Query Raster Knowledge Store Feature Class Metadata message 

(Table 4-9) should cause the Raster Knowledge Store to reply to the requestor with the 

Code F402h: Report Raster Knowledge Store Feature Class Metadata.  There is a single 

field associated with this message.  This field specifies the feature class metadata to 
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return in the reply.  There is also an option to return metadata for all feature classes 

present in the queried raster knowledge store. 

Table 4-9.  Query raster knowledge store feature class metadata message format 
Field # Name Type Units Interpretation 
1 Feature 

Class 
Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature           
                       Class Table 
65,535 – All 
 

 
4.2.2.8 Code F202h: Query raster knowledge store bounds 

The Code F202h: Query Raster Knowledge Store Bounds message (Table 4-10) is 

used to request the spatial extents of a single feature class or of all feature classes within 

a raster knowledge store.  The knowledge store should respond with the Code F404h: 

Report Raster Knowledge Store Bounds message.  The bounds are represented by two 

points the represent the rectangular region that just covers all of the data within the 

feature class layer or layers. 

Table 4-10.  Query raster knowledge store bounds message format 
Field # Name Type Units Interpretation 
1 Local 

Request ID 
Byte N/A Request identifier to be used 

when returning data to 
requesting component 

2 Feature 
Class 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature           
                       Class Table 
65,535 – All Feature Classes 
 

 
4.2.2.9 Code F600h: Raster knowledge store event notification request 

The Code F660h: Raster Knowledge Store Event Notification Request message is 

used to establish an event triggered query within the knowledge store.  Therefore, this 

message is formatted exactly the same as the Code F200h: Query Raster Knowledge 

Store Objects message.  That message should be referenced for the format of this 
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message.  Whenever the criteria established in this message are met, depending on the 

query response field of the event notification request, the raster knowledge store should 

transmit either the Code F800h: Raster Knowledge Store Event Notification (Cell 

Update) message or the Code F801h: Raster Knowledge Store Event Notification (Grid 

Update) message. 

4.2.2.10 Code F601h: Raster knowledge store bounds change event notification 
request 

The Code F601h: Raster Knowledge Store Bounds Change Event Notification 

Request message is used to establish an event triggered response to notify the requesting 

component of when the data in a feature class extends past the bounds of the data when 

the initial request was sent.  When the extents of the data change, the raster knowledge 

store will transmit the Code F802: Raster Knowledge Store Bounds Change Event 

Notification message. 

4.2.2.11 Code F005h: Terminate raster knowledge store data transfer 

This Code F005h: Terminate Raster Knowledge Store Data Transfer message is a 

command class message that should cause the raster knowledge store to immediately 

terminate the transfer of all current and outstanding data destined to the requesting 

component.  Upon termination, the raster knowledge store should send the requestor the 

Code F405h: Report Raster Knowledge Store Data Transfer Termination message. 

4.2.3 Raster Knowledge Store Output Message Set 

In the following subsections are the messages that define the output of the raster 

version of the world model knowledge store.  These inform and event notification class 

messages are transmitted in response to the command, query, and event setup class of 

input messages presented in Section 4.2.2. 
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The outputs of the raster knowledge store are: 

• The JAUS core output message set 
• Code F400h: Report raster knowledge store object creation 
• Code F401h: Report raster knowledge store feature class metadata 
• Code F402h: Report raster knowledge store objects (cell update) 
• Code F403h: Report raster knowledge store objects (grid update) 
• Code F404h: Report raster knowledge store bounds 
• Code F800h: Raster knowledge Store Event Notification (cell update) 
• Code F801h: Raster knowledge store event notification (grid update) 
• Code F802h: Raster knowledge store bounds change event notification 
• Code F405h: Report raster knowledge store data transfer termination 
 
4.2.3.1 Code F400h: Report raster knowledge store object creation 

The Code F400h: Report Raster Knowledge Store Object Creation message (Table 

4-11) is used to confirm creation of raster objects in the raster knowledge store.  This 

message is sent only when an object creation message is requested by setting bit zero in 

the Code F000h: Create Raster Knowledge Store Object message.  If this bit is set, this 

message will be transmitted and the local object identifier (field 1) is set to the value sent 

with the Code F000h: Create Raster Knowledge Store Raster Object message.   

Table 4-11.  Report raster knowledge store object creation message format 
Field # Name Type Units Interpretation 
1 Local 

Request ID 
Byte N/A Local request identifier sent by 

creating component 
 
4.2.3.2 Code F401h: Report raster knowledge store feature class metadata 

The Code F401h: Report Raster Knowledge Store Feature Class Metadata message 

(Table 4-12) allows access to feature class metadata stored within raster knowledge store.  

It is transferred in response to the Code F201h: Query Raster Knowledge Store Feature 

Class Metadata message.  If the query message requests all feature classes, a separate 

message should be sent for each feature class. 
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These metadata are entered using the Code F001h: Set Raster Knowledge Store 

Feature Class Metadata message. 

Table 4-12.  Report raster knowledge store feature class metadata message format 
Field # Name Type Units Interpretation 
1 Feature 

Class 
Short 
Integer 

N/A Enumeration 
0 … 65,535 - See Feature  
                       Class Table 

2 Number of 
String 
Characters 

Unsigned 
Short 
Integer 

N/A 0 … 65,535 

3 Metadata String N/A Variable length string 
 
4.2.3.3 Code F402h: Report raster knowledge store objects (cell update) 

The Code F402h: Report Raster Knowledge Store Objects (Cell Update) message 

(Table 4-13) is sent in direct response to a Code F200h: Query Raster Knowledge Store 

Objects message if and only if bit two of the bit field in message field two is set.  

Otherwise, the Code F403h: Report Raster Knowledge Store Objects (Grid Update) 

message is transmitted.  If bit one of field two of the Code F200h: Query Raster 

Knowledge Store Objects message is set, then only the first two fields of this message 

shall be transmitted.  Field 1 of this message is Local Request Identifier sent with the 

query that initiated this report message.  Field 2 notifies the receiving component of the 

number of records included in the report message.  Fields 3 and 4 establish the geodetic 

origin (latitude and longitude) of the cell updates included in the message.  Both the data 

types that describe the update row and column and cell attribute are variable and are 

specified in fields 5 and 8, respectively.  Field 6 is the resolution of the raster grid 

updates reported in the message.  Field 7 is the feature class that raster data are assigned 

to. 
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Table 4-13.  Report raster knowledge store objects (cell update) message format 
Field # Name Type Units Interpretation 
1 Local 

Request ID 
Byte N/A Request identifier sent with 

initial request 
2 Number of 

Responses 
Unsigned 
Short 
Integer 

N/A 0 … 65,535 
Number of Responses 
Included on this Report 
Message 

3 Origin 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

4 Origin 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

5 Raster Data 
Row and 
Column 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7 – 255: Reserved 

6 Cell 
Resolution 

Float Meters  

7 Feature 
Class 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature 
Class Table 
65,535 - Reserved 

8 Raster Cell 
Data Type 

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
19: RGB (3 Bytes) 
10 – 255: Reserved 
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Table 4-13.  Continued 
Field # Name Type Units Interpretation 
9 Data Type 

for Number 
of Cell 
Updates  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7 – 255: Reserved 

10 Number of 
Cell 
Updates  

Varies (see 
field 8) 

N/A  

11 Raster Cell 
Update 1 
Row 

Varies (see 
field 5) 

N/A  

12 Raster Cell 
Update 1 
Col 

Varies (see 
field 5) 

N/A  

13 Raster Cell 
Update 1 
Data 

Varies (see 
field 8) 

Varies with 
Feature 
Class 

 

…     
…     
…     
3n + 8 Raster Cell 

Update n 
Row  

Varies (see 
field 5) 

N/A  

3n + 9 Raster Cell 
Update n 
Col 

Varies (see 
field 5) 

N/A  

3n + 10 Raster Cell 
Update n 
Data 

Varies (see 
field 8) 

Varies with 
Feature 
Class 

 

 
4.2.3.4 Code F403h: Report raster knowledge store objects (grid update) 

The Code F403h: Report Raster Knowledge Store Objects (Grid Update) message 

(Table 4-14) is sent in direct response to a Code F200h: Query Raster Knowledge Store 

Objects message if and only if bit two of the bit field in message field two is clear.  

Otherwise, the Code F402h: Report Raster Knowledge Store Objects (Cell Update) 
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message is transmitted.  If bit one of field two of the Code F200h: Query Raster 

Knowledge Store Objects message is set, then only the first two fields of this message 

shall be transmitted.   

Field 1 of this message is Local Request Identifier sent with the query that initiated 

this report message.  Field 2 notifies the receiving component of the number of records 

included in the report message.  Fields 3 and 4 establish the geodetic origin (latitude and 

longitude) of the cell updates included in the message.  Both the data types that describe 

the update row and column and cell attribute are variable and are specified in fields 5 and 

10, respectively.  Fields 6 and 7 represent the number of rows and columns of grid update 

cells.  Field 8 is the resolution of the raster grid updates reported in the message.  Field 9 

is the feature class that raster data are assigned to. 

Table 4-14.  Report raster knowledge store objects (grid update) message format 
Field # Name Type Units Interpretation 
1 Local 

Request ID 
Byte N/A Request identifier sent with 

initial request 
2 Number of 

Responses 
Unsigned 
Short 
Integer 

N/A 0 … 65,535 
Number of Responses Included 
on this Report Message 

3 Origin 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

4 Origin 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

5 Raster Data 
Row and 
Column 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Reserved 
2: Reserved 
3: Reserved 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7 – 255: Reserved 
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Table 4-14.  Continued 
Field # Name Type Units Interpretation 
6 Raster Grid 

Update 
Rows 

Varies (See 
field 5) 

Grid Cells  

7 Raster Grid 
Update 
Columns 

Varies (See 
field 5) 

Grid Cells  

8 Cell 
Resolution 

Float Meters  

9 Feature 
Class 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 - Reserved 

10 Raster Cell 
Data Type 

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
19: RGB (3 Bytes) 
10 – 255: Reserved 

11 Raster Cell 
Update 1 

Varies (see 
field 10) 

N/A  

12 Raster Cell 
Update 2 

Varies (see 
field 10) 

N/A  

…     
10 + n Raster Cell 

Update n 
Varies (see 
field 10) 

N/A  

11 + n Raster Cell 
n+1 

Varies (see 
field 10) 

N/A  

 
4.2.3.5 Code F404h: Report raster knowledge store bounds 

The Code F404h: Report Raster Knowledge Store message format is shown in 

Table 4-15.  This message reports the Raster Knowledge Store bounds as a response to 

the Query Knowledge Store Bounds message.  In this message, the raster knowledge 
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store returns the two geographic points that represent the extents of the data within a 

feature class layer or all feature class layers. 

Table 4-15.  Report raster knowledge store bounds message format 
Field # Name Type Units Interpretation 
1 Southwest 

Point 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

2 Southwest 
Point 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

3 Northeast 
Point 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

4 Northeast 
Point 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

 
4.2.3.6 Code F800h: Raster knowledge store event notification (cell update) 

The Code F800h: Raster Knowledge Store Event Notification (Cell Update) 

message is an event triggered message that is sent in response to the Code F600h: Raster 

Knowledge Store Event Notification Request message.  When bit two of the bit field in 

that message field two is set, this message is transmitted when the conditions specified in 

the event notification request are met.  The format of this message is identical to that of 

the Code F402h: Report Raster Knowledge Store Objects (Cell Update) message. 

4.2.3.7 Code F801h: Raster knowledge store event notification (grid update) 

The Code F801h: Raster Knowledge Store Event Notification (Grid Update) 

message is an event triggered message that is sent in response to the Code F600h: Raster 

Knowledge Store Event Notification Request message.  When bit two of the bit field in 

that message field two is clear, this message is transmitted when the conditions specified 
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in the event notification request are met.  The format of this message is identical to that of 

the Code F403h: Report Raster Knowledge Store Objects (Grid Update) message. 

 
4.2.3.8 Code F802h: Raster knowledge store bounds change event notification 

The Code F802h: Raster Knowledge Store Bounds Change Event Notification 

message is an event triggered message that is sent in response to the Code F601h: Raster 

Knowledge Store Bounds Change Event Notification Request message.  It is transmitted 

to the requesting component each time the spatial extents of a feature class or feature 

classes (as specified in the event notification request message) change.  The format of 

this message is identical to that of the Code F404h: Report Raster Knowledge Store 

Bounds message. 

4.2.3.9 Code F405h: Report raster knowledge store data transfer termination 

The Code F405h: Report Raster Knowledge Store Data Transfer Termination 

message notifies other JAUS components that data that were being transferred or were 

going to be transferred to them has been stopped.  This message is sent in response to the 

Code F005h: Terminate Raster Knowledge Store Data Transfer message.  It is also sent 

whenever data transfer is interrupted due to a change in the component state as discussed 

in Section 4.2.1. 

4.2.4 Vector Knowledge Store Input Message Set 

Below are the messages that define the input methods to the vector version of the 

knowledge store.   

Inputs: 

• The JAUS core input message set 
• Code F020h: Create vector knowledge store objects 
• Code F021h: Set vector knowledge store feature class metadata 
• Code F022h: Delete vector knowledge store objects 
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• Code F220h: Query vector knowledge store objects 
• Code F221h: Query vector knowledge store feature class metadata 
• Code F222h: Query vector knowledge store bounds 
• Code F620h: Vector knowledge store event notification request 
• Code F621h: Vector knowledge store bounds change event notification request 
• Code F023h: Terminate vector knowledge store data transfer 
 
4.2.4.1 Code F020h: Create vector knowledge store objects 

The Code F020h: Create Vector Knowledge Store Objects message (Table 4-16) is 

used to add objects to the Vector Knowledge Store.  This message allows multiple vector 

objects to be created using a single message.   

Field 1 of this message is the presence vector (Table 4-17).  When multiple objects 

are created using the same message, the presence vector shall apply to all objects.  

Because there is a single presence vector associated with this message, all objects within 

this message shall use this presence vector.  Field 2 of this message is the creation 

message properties.  If bit zero is set, then the knowledge store shall return the Code 

F420h: Report Vector Knowledge Store Object(s) Creation message with the local 

request identifier specified in field 3.  The data type that describes the vector objects’ 

attributes is variable and is specified in fields 4.  Field 5 indicates the number of vector 

objects included in the message.  Fields 6 begins the definition of a single vector object.  

The vector objects is defined by its type (point, line, or polygon), the number of feature 

classes that it is assigned to, an attribute for each feature class, followed by the global 

coordinates of the vertices of the object.  These fields are repeated for each object created 

using this message.  Again, the presence vector applies to each vector object. 
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Table 4-16.  Create vector knowledge store objects message format 
Field # Name Type Units Interpretation 
1 Presence 

Vector 
Byte N/A See mapping table below 

2 Message 
Properties 

Byte N/A Bit Field 
0: Request confirmation of  
    object creation 
1 – 7: Reserved 

3 Local 
Request ID 

Byte N/A Request identifier to be used 
when returning confirmation to 
requesting component 

4 Feature 
Class 
Attribute 
Data Type 
for Vector 
Objects 

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
9: RGB (3 Bytes) 
10 – 255: Reserved 

5 Number of 
Objects 

Unsigned 
Short 
Integer 

 0, reserved 
1 … 65,535 

6 Object 1 
Type 

Byte N/A Enumeration 
0: Point 
1: Line 
2: Polygon 
3 – 255: Reserved 

7 Object 1 
Buffer 

Float Meters  

8 Object 1 
Number of 
Feature 
Classes 

Byte N/A  

8 Object 1 
Feature 
Class 1 

Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 – Reserved 

… … … … … 
 Object 1 

Feature 
Class m 

Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 – Reserved 
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Table 4-16.  Continued 
Field # Name Type Units Interpretation 
 Object 1 

Feature 
Class 
Attribute 1 

Varies (see 
field 4) 

Varies 
with 
Feature 
Class 

 

… … … … … 
 Object 1 

Feature 
Class 
Attribute m 

Varies (see 
field 4) 

Varies 
with 
Feature 
Class 

 

 Object 1 
Point 1 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

 Object 1 
Point 1 
Longitude 
(WGS84) 
 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

 … … … … 
 Object 1 

Point n 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

 Object 1 
Point n 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

 Object p 
Type 

Byte N/A Enumeration 
0: Point 
1: Line 
2: Polygon 
3 – 255: Reserved 

 Object p 
Buffer 

Float Meters  
 
 

 Object p 
Number of 
Feature 
Classes 

Byte N/A  

 Object p 
Feature 
Class 1 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 – See Feature  
                       Class Table 
65,535 – Reserved 

… … … … … 
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Table 4-16.  Continued 
Field # Name Type Units Interpretation 
 Object p 

Feature 
Class m 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 – Reserved 

 Object p 
Feature 
Class 
Attribute 1 

Varies (see 
field 4) 

Varies 
with 
Feature 
Class 

 

… … … … … 
 Object p 

Feature 
Class 
Attribute m 

Varies (see 
field 4) 

Varies 
with 
Feature 
Class 

 

 … … … … 
 Object p 

Point r 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

 Object p 
Point r 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

 
Table 4-17.  Presence vector for create vector knowledge store objects message 

Vector to Data Field Mapping for Above Command 
Vector Bit 7 6 5 4 3 2 1 0 
Data Field R R R R R R R 7 
 

4.2.4.2 Code F021h: Set vector knowledge store feature class metadata 

As described in Section 4.1, metadata are data about data.  The Code F021h: Set 

Vector Knowledge Store Feature Class Metadata (Table 4-18) message allows a user to 

create, modify, and delete feature class metadata.  At the present time the format of these 

metadata is not specified.  It is left to the system designer to develop a convention for 

doing this.  Initially these data are to be used by the human operators.  In the future a 

schema may be defined so as to provide a standard metadata format that may be parsed 

and the data used by unmanned systems without human intervention. 
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Table 4-18.  Set vector knowledge store feature class metadata message format 
Field # Name Type Units Interpretation 
1 Metadata 

Options 
Byte N/A Enumeration 

0: Append 
1: Prepend 
2: Overwrite 
3 – 254: Reserved 
255: Erase All 

2 Feature 
Class 

Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 – Reserved 

3 Number of 
String 
Characters 

Unsigned 
Short 
Integer 

N/A 0 … 65,535 
 
This field should be equal to 
zero only when Field 1 is equal 
to 255 (Erase All) 
 

4 Feature 
Class 
Metadata 

String N/A Variable length string 
 
 
 

 
4.2.4.3 Code F022h: Delete vector knowledge store objects 

The Code F022h: Delete vector knowledge store objects message (Table 4-19) 

allows the deletion of objects from the vector knowledge store.  This message allows 

multiple vector objects to be deleted using a single message.   

Field 1 of this message is the presence vector (Table 4-20).  Fields 5 and 6 are the 

only optional fields in this message.  When they are included, they further limit the scope 

of the deletion.  Field 2 of this message is the Local Request Identifier.  Field 3 identifies 

the type of region that will be used to select the objects to delete.   The number of vertices 

for this region is specified in field 4.  Field 5 indicates the size of the region buffer to use 

with this message.  Fields 7 begins the definition of vertices of the object deletion region. 
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Table 4-19.  Delete vector knowledge store objects message format 
Field # Name Type Units Interpretation 

Presence 
Vector 

Byte N/A See mapping table below 
 
 

2 Local 
Request ID 

Byte N/A Request identifier to be used 
when returning confirmation to 
requesting component 
 

3 Region 
Type 

Byte N/A Enumeration 
0: Point 
1: Line 
2: Polygon 
3 – 255: Reserved 
 

4 Number of 
Region 
Points 

Short 
Integer 

N/A 0: Reserved 
1 … 65,535 

5 Region 
Buffer 

Float Meters  

6 Feature 
Class 

Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature   
                       Class Table 
65,535 – ALL 

7 Deletion 
Region  
Point 1 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

8 Deletion 
Region  
Point 1 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

 … … … … 
 … … … … 
2n + 5 Deletion 

Region 
Point n 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

2n + 6 Deletion 
Region 
Point n 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

1 
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Table 4-20.  Presence vector for delete vector knowledge store objects message 
Vector to Data Field Mapping for Above Command 

Vector Bit 7 6 5 4 3 2 1 0 
Data Field R R R R R R 6 5 

 
4.2.4.4 Code F220h: Query vector knowledge store objects 

The Code F220h: Query Vector Knowledge Store Objects message (Table 4-21) 

allows the access to objects within the vector knowledge store.  Field 1 of this message is 

the presence vector (Table 4-22).  Fields 6, 7, and 8 are the only optional fields in this 

message.  When these fields are included, they further limit the scope of the query.  Field 

2 is a presence vector used to set the query response properties.  If bit zero is clear, then 

the response shall only include the first three fields of the Code F422h: Report Vector 

Knowledge Store Objects message.  Field 3 of this message is the Local Request 

Identifier.  Field 4 identifies the type of region that will be used to limit the query.   The 

number of vertices for this region is specified in field 5.  Field 6 indicates the size of the 

region buffer to use with this message.  Fields 8 begins the definition of vertices of the 

object query region.  If this field is not present, the query scope shall be the entire 

knowledge store. 

Table 4-21.  Query vector knowledge store objects message format 
Field # Name Type Units Interpretation 
1 Presence 

Vector 
Unsigned 
Short 
Integer 

N/A See mapping table below 

2 Local Request 
ID 

Byte N/A Request identifier to be used 
when returning data to 
requesting component 

3 Query 
Properties 

Byte N/A Bit Field 
0: Only return number of  
    responses that would be     
    transmitted   
1 – 7: Reserved 
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Table 4-21.  Continued 
Field # Name Type Units Interpretation 
4 Region Type Byte N/A Enumeration 

0: Point 
1: Line 
2: Polygon 
3 – 255: Reserved 

5 Number of 
Region Points 

Unsigned 
Short 
Integer 

N/A 0, reserved 
1 … 65,535 

6 Region Buffer Float Meters  
 

7 Feature Class Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature   
                       Class Table 
65,535 – All Feature Classes 

8 Query Region 
Point 1 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

9 Query Region 
Point 1 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

2n + 6 Query Region 
Point n 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

2n + 7 Query Region 
Point n 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

 
Table 4-22.  Presence vector for query vector knowledge store objects message 

Vector to Data Field Mapping for Above Command 
Vector Bit 7 6 5 4 3 2 1 0 
Data Field R R R R R 8 7 6 

 
4.2.4.5 Code F221h: Query vector knowledge store feature class metadata 

The Code F221h: Query Vector Knowledge Store Feature Class Metadata message 

(Table 4-23) should cause the Vector Knowledge Store to reply to the requestor with the 

Code F422h: Report Vector Knowledge Store Feature Class Metadata.  There is a single 
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field associated with this message.  This field specifies the feature class metadata to 

return in the reply.  There is also an option to return metadata for all feature classes 

present in the queried raster knowledge store. 

Table 4-23.  Query vector knowledge store feature class metadata message format 
Field # Name Type Units Interpretation 
1 Feature 

Class 
Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature          
                       Class Table 
65,535 – All 
 

 
4.2.4.6 Code F222h: Query vector knowledge store bounds 

The Code F222h: Query Vector Knowledge Store Bounds message (Table 4-24) is 

used to request the spatial extents of a single feature class or of all feature classes within 

a vector knowledge store.  The knowledge store should respond with the Code F424h: 

Report Vector Knowledge Store Bounds message.  The bounds are represented by two 

points the represent the rectangular region that just covers all of the data within the 

feature class layer or layers. 

Table 4-24.  Query raster knowledge store bounds message format 
Field # Name Type Units Interpretation 
1 Local 

Request ID 
Byte N/A Request identifier to be used 

when returning data to 
requesting component 

2 Feature 
Class 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature           
                       Class Table 
65,535 – All Feature Classes 
 

 
4.2.4.7 Code F620h: Vector knowledge store event notification request 

The Code F620h: Vector Knowledge Store Event Notification Request message is 

used to establish an event triggered query within the knowledge store.  Therefore, this 

message is formatted exactly the same as the Code F220h: Query Vector Knowledge 
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Store Objects message.  That message should be referenced for the format of this 

message.  Whenever the criteria established in this message are met, the raster knowledge 

store should transmit the Code F820h: Vector Knowledge Store Event Notification 

message with the appropriate data attached. 

4.2.4.8 Code F621h: Vector knowledge store bounds change event notification 
request 

The Code F621h: Vector Knowledge Store Bounds Change Event Notification 

Request message is used to establish an event triggered response to notify the requesting 

component of when the data in a feature class extends past the bounds of the data when 

the initial request was sent.  When the extents of the data change, the raster knowledge 

store will transmit the Code F821h: Vector Knowledge Store Bounds Change Event 

Notification message. 

4.2.4.9 Code F023h: Terminate vector knowledge store data transfer 

This Code F023h: Terminate Vector Knowledge Store Data Transfer message is a 

command class message that should cause the vector knowledge store to immediately 

terminate the transfer of all current and outstanding data destined to the requesting 

component.  Upon termination, the raster knowledge store should send the requestor the 

Code F424h: Report Vector Knowledge Store Data Transfer Termination message. 

4.2.5 Vector Knowledge Store Output Message Set 

Below are the messages that define the output methods for the vector version of the 

world model knowledge store.   

Outputs: 

• The JAUS core output message set 
• Code F420h: Report vector knowledge store object(s) creation 
• Code F421h: Report vector knowledge store feature class metadata 
• Code F422h: Report vector knowledge store objects 

 



103 

• Code F423h: Report vector knowledge store bounds 
• Code F820h: Vector knowledge store event notification 
• Code F821h: Vector knowledge store bounds change event notification 
• Code F424h: Report vector knowledge store data transfer termination 
 
4.2.5.1 Code F420h: Report vector knowledge store object(s) creation 

The Code F420h: Report Vector Knowledge Store Object Creation message (Table 

4-25) is used to confirm creation of objects in the vector knowledge store.  This message 

is sent only when an object creation message is requested by setting bit zero in the Code 

F020h: Create Vector Knowledge Store Object message.  If this bit is set, this message 

will be transmitted and the local object identifier (field 1) is set to the value sent with the 

Code F020h: Create Vector Knowledge Store Raster Object message.   

Table 4-25.  Report vector knowledge store object(s) creation message format 
Field # Name Type Units Interpretation 
1 Local 

Request ID 
Byte N/A Local request identifier sent by 

creating component 
 
4.2.5.2 Code F421h: Report vector knowledge store feature class metadata 

The Code F421h: Report Vector Knowledge Store Feature Class Metadata message 

(Table 4-26) allows access to feature class metadata stored within raster knowledge store.  

It is transferred in response to the Code F221h: Query Vector Knowledge Store Feature 

Class Metadata message.  If the query message requests all feature classes, a separate 

message should be sent for each feature class. 

These metadata are entered using the Code F021h: Set Vector Knowledge Store 

Feature Class Metadata message. 

Table 4-26.  Report vector knowledge store feature class metadata message format 
Field #    Name   Type Units   Interpretation 
1 Feature Class Short Integer N/A Enumeration 

0 … 65,535  
See Feature Class Table 
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Table 4-26.  Continued 
Field #    Name   Type Units   Interpretation 
2 Number of String 

Characters 
Unsigned 
Short Integer 

N/A 0 … 65,535 

3 Feature Class 
Metadata 

String N/A Variable length string 

 
4.2.5.3 Code F422h: Report vector knowledge store objects 

The Code F422h: Report Vector Knowledge Store Objects message (Table 4-27) is 

sent in direct response to a Code F220h: Query Vector Knowledge Store Objects 

message.  

Field 1 is a presence vector that informs the receiving component as to whether or 

not data are included with the message.  If bit zero is set, then data should be expected 

after message field 3.  Field 2 of this message is Local Request Identifier sent with the 

query that initiated this report message.  Field 3 indicates the number of vector objects 

included in the message.  The data type that describes the vector objects’ attributes is 

variable and is specified in fields 4.  Fields 5 begins the definition of a single vector 

object.  The vector objects is defined by its type (point, line, or polygon), the number of 

feature classes that it is assigned to, an attribute for each feature class, followed by the 

global coordinates of the vertices of the object.  These fields are repeated for each object 

reported in this message.   

Table 4-27.  Report vector knowledge store objects message format 
Field # Name Type Units Interpretation 
1 Presence 

Vector 
Byte N/A Bit Field 

Bit 0: If data are present after   
          field 3, this bit should be 
          set.  This is based on  
          the parameters in the        
          received Query Vector  
          Knowledge Store   
          Objects Message.   
Bits 1-7: Reserved 
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Table 4-27.  Continued 
Field # Name Type Units Interpretation 
2 Local 

Request ID 
Byte N/A Request identifier to be used 

when returning confirmation to 
requesting component 

3 Number of 
Objects 

Unsigned 
Short 
Integer 

 0, reserved 
1 … 65,535 

4 Object 1 
Type 

Byte N/A Enumeration 
0: Point 
1: Line 
2: Polygon 
3 – 255: Reserved 

5 Object 1 
Buffer 

Float Meters  

6 Object 1 
Feature 
Class 

Short 
Integer 

N/A Enumeration 
0 … 65,534 - See Feature  
                       Class Table 
65,535 – Reserved 

7 Object 1 
Feature 
Class 
Attribute 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
9: RGB (3 Bytes) 
10 – 255: Reserved 
 

8 Object 1 
Feature 
Class 
Attribute 

Varies (see 
field 4) 

Varies 
with 
Feature 
Class 

 

9 Number of 
Points for 
Object 1 

Unsigned 
Short 
Integer 

 0, reserved 
1 … 65,535 
 

10 Object 1 
Point 1 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
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Table 4-27.  Continued 
Field # Name Type Units Interpretation 
11 Object 1 

Point 1 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

… … … … … 
… … … … … 
2m + 8 Object 1 

Point m 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

2m + 9 Object 1 
Point m 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

2m + 10 Object n 
Type 

Byte N/A Enumeration 
0: Point 
1: Line 
2: Polygon 
3 – 255: Reserved 

2m + 11 Object n 
Buffer 

Float Meters  
 

2m + 12 Object n 
Feature 
Class 

Short 
Integer 

N/A Enumeration 
0 … 65,535  See Feature  
                      Class Table 

2m + 13 Object n 
Feature 
Class 
Attribute 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
9: RGB (3 Bytes) 
10 – 255: Reserved 
 

2m + 14 Object n 
Feature 
Class 
Attribute 

Varies (see 
field 4) 

Varies 
with 
Feature 
Class 
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Table 4-27.  Continued 
Field # Name Type Units Interpretation 
2m + 15 Number of 

Points for 
Object n 

Unsigned 
Short 
Integer 

 0, reserved 
1 … 65,535 
 
 

2m + 16 Object n 
Point 1 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

2m + 17 Object n 
Point 1 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

… … … … … 
… … … … … 
 Object n 

Point k 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 
 

 Object n 
Point k 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
 

 
4.2.5.4 Code F423h: Report vector knowledge store bounds  

The Code F423h: Report Vector Knowledge Store Bounds message format is 

shown in Table 4-28.  This message reports the bounds as a response to the Query Vector 

Knowledge Store Bounds message.  In this message, the knowledge store returns the two 

geographic points that represent the extents of the data within a feature class layer or all 

feature class layers. 

Table 4-28.  Report vector knowledge store bounds message format 
Field # Name Type Units Interpretation 
1 Southwest Point 

Latitude (WGS84) 
Integer Degrees Scaled Integer 

     Lower Limit = -90 
     Upper Limit = 90 

2 Southwest Point 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
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Table 4-28.  Continued 
Field # Name Type Units Interpretation 
3 Northeast Point 

Latitude (WGS84) 
Integer Degrees Scaled Integer 

     Lower Limit = -90 
     Upper Limit = 90 

4 Northeast Point 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

 
4.2.5.5 Code F820h: Vector knowledge store event notification 

The Code F820h: Vector Knowledge Store Event Notification message is an event 

triggered message that is sent in response to the Code F620h: Vector Knowledge Store 

Event Notification Request message.  The format of this message is identical to that of 

the Code F422h: Report Vector Knowledge Store Objects message. 

4.2.5.6 Code F821h: Vector knowledge store bounds change event notification 

The Code F821h: Vector Knowledge Store Bounds Change Event Notification 

message is an event triggered message that is sent in response to the Code F621h: Vector 

Knowledge Store Bounds Change Event Notification Request message.  It is transmitted 

to the requesting component each time the spatial extents of a feature class or feature 

classes (as specified in the event notification request message) change.  The format of 

this message is identical to that of the Code F423h: Report Vector Knowledge Store 

Bounds message. 

4.2.5.7 Code F424h: Report vector knowledge store data transfer termination 

The Code F424h: Report Vector Knowledge Store Data Transfer Termination 

message notifies other JAUS components that data that were being transferred or were 

going to be transferred to them has been stopped.  This message is sent in response to the 

Code F025h: Terminate Vector Knowledge Store Data Transfer message.  It is also sent 
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whenever data transfer is interrupted due to a change in the component state as discussed 

in Section 4.2.1. 

The messages presented in the preceding sections present a solution to world 

modeling within the context of the Joint Architecture for Unmanned Systems (JAUS).  

The defined messages allow the raster and vector versions of the knowledge store to 

receive and transmit formatted geospatial data.  Because the underlying geometry of most 

geospatial data is based on raster or vector objects, the JAUS World Model components 

are able to support most types of geospatial data including those presented in Chapter 2.

 



CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Our study focused on standardization of an interface between unmanned systems.  

Specifically, it focused on standardizing the interface between different types of 

geospatial data stores within the JAUS framework.  In responding to the research 

problem stated in Chapter 1, a review of relevant literature was done.  Next a system of 

distributed modular sensor processing units was developed.  This system of modular 

sensors is called the Smart Sensor Architecture.  Its development laid the foundation for 

the development of the world model message set presented in Chapter 4.  This generic 

JAUS message set was developed to allow transfer of basic forms of both raster and 

vector formatted geospatial data. 

The interfaces to the world model knowledge stores as introduced in Chapter 4 

present a standardized method for communicating geospatial data.  The application 

possibilities of these messages are endless.  While it is useful for single unmanned 

systems for mapping its environment, it is particularly useful for collaborative robotics 

tasks.  For example, an unmanned system with a powerful sensor suite could be used to 

map an area for obstacles.  That map, or world model, could be shared with other 

unmanned systems to allow them to traverse a region with minimal or no sensors; 

essentially sharing the resources of another unmanned system.   

It should be clear that our study in not a final solution to the question of how to 

share geospatial data between multiple unmanned systems.  It is a first step in a long 
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process of defining a standard for the growing JAUS community.  The consequences of 

the work presented herein could very well be far reaching indeed.  Just imagine a class of 

unmanned systems with a shared language – a standard method of communicating with 

other unmanned systems.  Unmanned systems that are able to, despite the fact that they 

were developed by different vendors, interoperate with minimal effort.  With JAUS, this 

is becoming a reality.  Our study is a significant contribution to the JAUS Working 

Group’s effort to develop the next generation of intelligent JAUS systems. 

5.2 Future Work  

Since the problem addressed by our study is open-ended, this work must and most 

certainly will continue on.  There is no single best way to model or share geospatial data.  

What is important is that all concerned parties reach consensus on how to do this.  

Therefore the results of our study provides a base upon which the JAUS community can 

build.  As with any new component added to the JAUS Reference Architecture, the 

component messages presented herein must be vetted by all interested parties within the 

JAUS community.  Only after approval by the JAUS Reference Architecture Committee 

and the JAUS Working Group as a whole will it be adopted. 

Chapter 4 presents two separate methods for modeling and sharing both raster and 

vector geospatial data.  What was not address is how to bridge the two modeling 

methods.  Converting vector data to raster format is trivial.  This simply requires the 

projection of the points along the edges of the vector object into a grid.  The grid should 

be of high enough resolution to accurately represent the vector objects.  The more 

difficult side of this bridge is the conversion from raster to vector.  Because transfer and 

storage of raster data is very expensive, this is of particular importance when it comes 

sharing data between unmanned systems.  Raster data requires a large amount of 
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bandwidth during transmission.  For example, even when transmitting a large amount of 

raster formatted geospatial data areas have similar values, each cell must still be 

transmitted.  A possible approach to the raster to vector conversion problem is the use of 

the Level Set Method developed by Sethian in [27].  This approach will be explored as a 

possible solution to this problem. 

Another future extension for the standard presented in Chapter 4 is the addition of 

support for more projected coordinate systems.  For the sake of simplicity, this message 

set requires all global coordinates to be based on the World Geodetic System 1984 

(WGS) and the projected coordinate system to be based on the Universal Transverse 

Mercator projection.  As discussed in Chapter 2, there are benefits to use of different 

types of projected coordinate systems.  UTM is a good general purpose transformation, 

but system developers may want or need to use another projection that preserves features 

that are most important to them.  The standard should grow to not only support, but allow 

systems to distinguish and convert of data from different projections. 

One of the most often discussed issue with JAUS is that is not a very flexible or 

extensible architecture.  As this document attempts a first step at bridging the GIS and 

Unmanned Systems communities, it is expected that the World Model subcommittee of 

JAUS will make an effort to bring in members of the GIS community.  There is a wealth 

of knowledge and contributions to be gained from both the unmanned systems and GIS 

communities.  This is perhaps the most important continuation plan for this work. 
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